On the -boundedness of stochastic convolution operators

被引:1
|
作者
van Neerven, Jan [1 ]
Veraar, Mark [1 ]
Weis, Lutz [2 ]
机构
[1] Delft Univ Technol, Delft Inst Appl Math, NL-2600 GA Delft, Netherlands
[2] Karlsruhe Inst Technol, Dept Math, D-76128 Karlsruhe, Germany
关键词
Stochastic convolutions; Maximal regularity; R-boundedness; Hardy-Littlewood maximal function; UMD Banach function spaces; L-P-REGULARITY; BANACH; INTEGRATION; EQUATIONS; VALUES;
D O I
10.1007/s11117-014-0302-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The R-boundedness of certain families of vector-valued stochastic convolution operators with scalar-valued square integrable kernels is the key ingredient in the recent proof of stochastic maximal -regularity, , for certain classes of sectorial operators acting on spaces , . This paper presents a systematic study of -boundedness of such families. Our main result generalises the afore-mentioned -boundedness result to a larger class of Banach lattices and relates it to the -boundedness of an associated class of deterministic convolution operators. We also establish an intimate relationship between the -boundedness of these operators and the boundedness of the -valued maximal function. This analysis leads, quite surprisingly, to an example showing that -boundedness of stochastic convolution operators fails in certain UMD Banach lattices with type 2.
引用
收藏
页码:355 / 384
页数:30
相关论文
共 50 条
  • [1] Boundedness of some convolution and twisted convolution operators
    Karapetyants, AN
    de Arellano, ER
    SINGULAR INTEGRAL OPERATORS, FACTORIZATION AND APPLICATIONS, 2003, 142 : 133 - 145
  • [2] Boundedness of Convolution Operators on Hardy Spaces
    Belinsky, Eduard
    Liflyand, Elijah
    COMPUTATIONAL METHODS AND FUNCTION THEORY, 2019, 19 (02) : 183 - 191
  • [3] Boundedness of Convolution Operators on Hardy Spaces
    Eduard Belinsky
    Elijah Liflyand
    Computational Methods and Function Theory, 2019, 19 : 183 - 191
  • [5] On Lp → Lq boundedness of the twisted convolution operators
    Maity, Arup Kumar
    Ratnakumar, P. K.
    JOURNAL OF ANALYSIS, 2023, 31 (02): : 945 - 950
  • [6] Boundedness properties of some convolution operators with singular measures
    Ferreyra, E
    Godoy, T
    Urciuolo, M
    MATHEMATISCHE ZEITSCHRIFT, 1997, 225 (04) : 611 - 624
  • [7] Boundedness properties of some convolution operators with singular measures
    E. Ferreyra
    T. Godoy
    M. Urciuolo
    Mathematische Zeitschrift, 1997, 225 : 611 - 624
  • [8] Boundedness of convolution operators with smooth kernels on Orlicz spaces
    Aimar, H
    Harboure, E
    Iaffei, B
    STUDIA MATHEMATICA, 2002, 151 (03) : 195 - 206
  • [9] Stochastic homogenization of convolution type operators
    Piatnitski, A.
    Zhizhina, E.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2020, 134 : 36 - 71
  • [10] Boundedness and Spectrum of Multiplicative Convolution Operators Induced by Arithmetic Functions
    Kibrom G.GEBREMESKEL
    Lin Zhe HUANG
    Acta Mathematica Sinica,English Series, 2019, (08) : 1300 - 1310