A Comprehensive Comparison of the Analytical and Numerical Prediction of the Thermal History and Solidification Microstructure of Inconel 718 Products Made by Laser Powder-Bed Fusion

被引:188
|
作者
Promoppatum, Patcharapit [1 ]
Yao, Shi-Chune [1 ]
Pistorius, P. Chris [2 ]
Rollett, Anthony D. [2 ]
机构
[1] Carnegie Mellon Univ, Dept Mech Engn, Pittsburgh, PA 15213 USA
[2] Carnegie Mellon Univ, Dept Mat Sci & Engn, Pittsburgh, PA 15213 USA
基金
美国国家航空航天局;
关键词
Additive manufacturing; Finite-element modeling; Rosenthal equation; Microstructure; Thermal behavior; Inconel; 718; GROWTH;
D O I
10.1016/J.ENG.2017.05.023
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The finite-element (FE) model and the Rosenthal equation are used to study the thermal and microstructural phenomena in the laser powder-bed fusion of Inconel 718. A primary aim is to comprehend the advantages and disadvantages of the Rosenthal equation (which provides an analytical alternative to FE analysis), and to investigate the influence of underlying assumptions on estimated results. Various physical characteristics are compared among the FE model, Rosenthal equation, and experiments. The predicted melt pool shapes compared with reported experimental results from the literature show that both the FE model and the analytical (Rosenthal) equation provide a reasonably accurate estimation. At high heat input, under conditions leading to keyholing, the reported melt width is narrower than predicted by the analytical equation. Moreover, a sensitivity analysis based on choices of the absorptivity is performed, which shows that the Rosenthal approach is more sensitive to absorptivity, compared with the FE approach. The primary reason could be the effect of radiative and convective losses, which are assumed to be negligible in the Rosenthal equation. In addition, both methods predict a columnar solidification microstructure, which agrees well with experimental reports, and the primary dendrite arm spacing (PDAS) predicted with the two approaches is comparable with measurements. (C) 2017 THE AUTHORS. Published by Elsevier LTD on behalf of the Chinese Academy of Engineering and Higher Education Press Limited Company.
引用
收藏
页码:685 / 694
页数:10
相关论文
共 50 条
  • [1] Laser powder-bed fusion of Inconel 718 to manufacture turbine blades
    Fabrizia Caiazzo
    Vittorio Alfieri
    Gaetano Corrado
    Paolo Argenio
    The International Journal of Advanced Manufacturing Technology, 2017, 93 : 4023 - 4031
  • [2] Laser powder-bed fusion of Inconel 718 to manufacture turbine blades
    Caiazzo, Fabrizia
    Alfieri, Vittorio
    Corrado, Gaetano
    Argenio, Paolo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2017, 93 (9-12): : 4023 - 4031
  • [3] Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion
    Sharma, Sunny
    Palaniappan, Karthik
    Mishra, Vagish D.
    Vedantam, Srikanth
    Murthy, H.
    Rao, Balkrishna C.
    METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2023, 54 (01): : 270 - 285
  • [4] Mechanical Characterization of Near-Isotropic Inconel 718 Fabricated by Laser Powder-Bed Fusion
    Sunny Sharma
    Karthik Palaniappan
    Vagish D. Mishra
    Srikanth Vedantam
    H. Murthy
    Balkrishna C. Rao
    Metallurgical and Materials Transactions A, 2023, 54 : 270 - 285
  • [5] Evolution of dislocation cellular pattern in Inconel 718 alloy fabricated by laser powder-bed fusion
    He, Minglin
    Cao, Hailin
    Liu, Qian
    Yi, Jiang
    Ni, Yong
    Wang, Shuai
    ADDITIVE MANUFACTURING, 2022, 55
  • [6] Experiments and simulations on solidification microstructure for Inconel 718 in powder bed fusion electron beam additive manufacturing
    Knapp, G. L.
    Raghavan, N.
    Plotkowski, A.
    DebRoy, T.
    ADDITIVE MANUFACTURING, 2019, 25 : 511 - 521
  • [7] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Khorasani, Mahyar
    Ghasemi, AmirHossein
    Leary, Martin
    Cordova, Laura
    Sharabian, Elmira
    Farabi, Ehsan
    Gibson, Ian
    Brandt, Milan
    Rolfe, Bernard
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2022, 120 (3-4): : 2345 - 2362
  • [8] A comprehensive study on meltpool depth in laser-based powder bed fusion of Inconel 718
    Mahyar Khorasani
    AmirHossein Ghasemi
    Martin Leary
    Laura Cordova
    Elmira Sharabian
    Ehsan Farabi
    Ian Gibson
    Milan Brandt
    Bernard Rolfe
    The International Journal of Advanced Manufacturing Technology, 2022, 120 : 2345 - 2362
  • [9] Effect of Scanning Speed on Microstructure and Properties of Inconel 718 Fabricated by Laser Powder Bed Fusion
    Qin Cheng
    Xue Yan
    Transactions of the Indian Institute of Metals, 2023, 76 : 997 - 1006
  • [10] Effect of Scanning Speed on Microstructure and Properties of Inconel 718 Fabricated by Laser Powder Bed Fusion
    Cheng, Qin
    Yan, Xue
    TRANSACTIONS OF THE INDIAN INSTITUTE OF METALS, 2023, 76 (04) : 997 - 1006