On the Anisotropy of Lotus-Type Porous Copper

被引:16
|
作者
Fiedler, Thomas [1 ]
Veyhl, Christoph [1 ]
Belova, Irina Veniaminovna [1 ]
Tane, Masakazu [2 ]
Nakajima, Hideo [2 ]
Bernthaler, Timo [3 ]
Merkel, Markus [3 ]
Oechsner, Andreas [4 ]
Murch, Graeme Elliott [1 ]
机构
[1] Univ Newcastle, Ctr Mass & Thermal Transport Engn Mat, Callaghan, NSW 2308, Australia
[2] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan
[3] Univ Aalen, Fac Mech & Mat Engn, D-73430 Aalen, Germany
[4] Univ Teknol Malaysia, Fac Mech Engn, Utm Skudai 81310, Johor, Malaysia
基金
澳大利亚研究理事会;
关键词
LATTICE MONTE-CARLO; ELASTIC-CONSTANTS; THERMAL-CONDUCTIVITY; STAINLESS-STEEL; FABRICATION; METALS;
D O I
10.1002/adem.201100205
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper addresses the thermal and mechanical properties of lotus-type porous copper. Due to their cellular metal characteristics in combination with strong anisotropy, lotus-type materials exhibit unique properties. As an example, directional thermal conduction enables the controlled transport of thermal energy in the pore direction without the need of strong thermal insulation. In this paper, thermal and mechanical finite element analyses are performed. The effective thermal conductivity, Young's modulus, and the 0.2%-offset yield strength are determined. Special consideration is given to the anisotropy of the material. In order to guarantee accurate discretization of the complex material geometry, calculation models are directly based on computed microtomography data. Elastic properties are compared to experimental data and good agreement is found. For the characterization of the thermal anisotropy, a second numerical approach, called the Lattice Monte Carlo method, is used along with thermal finite element analysis. In addition to the numerical methods, the analytical Maxwell, Dulynev, and Bruggeman models are applied. Good agreement for the application of two-dimensional versions of Dulynev's and Bruggeman models is observed whereas the Maxwell model significantly overestimates the material properties.
引用
收藏
页码:144 / 152
页数:9
相关论文
共 50 条
  • [1] Deformation of Lotus-Type Porous Copper in Rolling
    Utsunomiya, Hiroshi
    Yukimoto, Tsuyoshi
    Sakai, Tetsuo
    Suzuki, Shinsuke
    Nakajima, Hideo
    ECO-MATERIALS PROCESSING AND DESIGN XI, 2010, 658 : 328 - +
  • [2] Internal Friction of Lotus-type Porous Copper
    Yoshinari, Osamu
    Kobayashi, Tetsuya
    Nakajima, Hideo
    Ide, Takuya
    POROUS METALS AND METALLIC FOAMS, METFOAM 2011, 2012, : 479 - 485
  • [3] Antibacterial Characteristics of Lotus-Type Porous Copper
    Lee, Jin-Soo
    Lee, Yun-Soo
    Kim, Mok-Soon
    Hyun, Soong-Keun
    Kang, Chang-Ho
    So, Jae-Seong
    Yoon, Eui-Han
    ADVANCES IN MATERIALS SCIENCE AND ENGINEERING, 2013, 2013
  • [4] Development of lotus-type porous copper heat sink
    Ogushi, Tetsuro
    Chiba, Hiroshi
    Nakajima, Hideo
    MATERIALS TRANSACTIONS, 2006, 47 (09) : 2240 - 2247
  • [5] Lotus-type Porous Copper Fabricated by Centrifugal Casting
    Lee, Y. S.
    Hyun, S. K.
    POROUS METALS AND METALLIC FOAMS, METFOAM 2011, 2012, : 159 - 162
  • [6] Strengthening of lotus-type porous copper by ECAE process
    Lobos, J.
    Suzuki, S.
    Utsunomiya, H.
    Nakajima, H.
    Rodrigez-Perez, M. A.
    JOURNAL OF MATERIALS PROCESSING TECHNOLOGY, 2012, 212 (10) : 2007 - 2011
  • [7] Surface modification of lotus-type porous copper by aluminization
    Cui, Chuanyu
    Du, Hao
    Wang, Jiqiang
    Yang, Yin
    Xiong, Tianying
    SN APPLIED SCIENCES, 2019, 1 (01):
  • [8] Anisotropic Tensile Deformation of Lotus-type Porous Copper
    Tane, Masakazu
    Okamoto, Rika
    Nakajima, Hideo
    ECO-MATERIALS PROCESSING AND DESIGN XII, 2011, 695 : 545 - 548
  • [9] Surface modification of lotus-type porous copper by aluminization
    Chuanyu Cui
    Hao Du
    Jiqiang Wang
    Yin Yang
    Tianying Xiong
    SN Applied Sciences, 2019, 1
  • [10] Effect of casting temperature on porous structure of lotus-type porous copper
    Liu, Xinhua
    Li, Xuefeng
    Jiang, Yanbin
    Xie, Jianxin
    2011 CHINESE MATERIALS CONFERENCE, 2012, 27 : 490 - 501