Highly dispersive solitary wave solutions of perturbed nonlinear Schrodinger equations

被引:200
|
作者
Kudryashov, Nikolay A. [1 ]
机构
[1] Natl Res Nucl Univ MEPhI, Moscow Engn Phys Inst, 31 Kashirskoe Shosse, Moscow 115409, Russia
基金
俄罗斯科学基金会;
关键词
Optical soliton; Exact solution; Highly dispersive soliton; Nonlinear differential equation; Nonlinear Schrodiner equation; ELLIPTIC FUNCTION EXPANSION; KERR LAW NONLINEARITY; TANH-FUNCTION METHOD; OPTICAL SOLITONS; LOGISTIC FUNCTION; EVOLUTION; MODULATION;
D O I
10.1016/j.amc.2019.124972
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Hierarchy of the perturbed nonlinear Schrodinger equations is considered. Nonlinear differential equations of this hierarchy contain higher orders and can be used for description of highly dispersive optical solutions. A new approach for finding solitary wave solutions of high-order nonlinear differential equations is presented. This approach allows us to significantly simplify symbolic calculations. The main idea of the method is that we use expressions of the dependent variable and its derivatives in the differential equation the polynomial form of the solitary wave. We find optical solitons with high dispersion order for nonlinear perturbed Schrodinger equations of the fourth, sixth, eighth, tenth and twelfth orders. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Gaussian solitary wave solutions for nonlinear perturbed Schrodinger equations with applications in nanofibers
    Kaur, Lakhveer
    Adel, Waleed
    Inc, Mustafa
    Rezazadeh, Hadi
    Akinyemi, Lanre
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2024, 38 (24):
  • [2] Stability of bright solitary-wave solutions to perturbed nonlinear Schrodinger equations
    Kapitula, Todd
    Sandstede, Bjoern
    Physica D: Nonlinear Phenomena, 1998, 124 (1-3): : 58 - 103
  • [3] Stability of bright solitary-wave solutions to perturbed nonlinear Schrodinger equations
    Kapitula, T
    Sandstede, B
    PHYSICA D, 1998, 124 (1-3): : 58 - 103
  • [4] Solitary wave solutions of chiral nonlinear Schrodinger equations
    Esen, Handenur
    Ozdemir, Neslihan
    Secer, Aydin
    Bayram, Mustafa
    Sulaiman, Tukur Abdulkadir
    Yusuf, Abdullahi
    MODERN PHYSICS LETTERS B, 2021, 35 (30):
  • [5] Solitary-wave solutions to nonlinear Schrodinger equations
    Morgan, SA
    Ballagh, RJ
    Burnett, K
    PHYSICAL REVIEW A, 1997, 55 (06) : 4338 - 4345
  • [6] Solitary wave solutions of coupled nonlinear Schrodinger equations
    Erbay, Husnu A.
    Bulletin of the Technical University of Istanbul, 1994, 47 (04):
  • [7] On solitary wave solutions to the nonlinear Schrodinger equations with two parameters
    Wang, Fanglei
    An, Yukun
    MATHEMATISCHE NACHRICHTEN, 2014, 287 (8-9) : 1057 - 1070
  • [8] Exact solitary wave solutions of the complex nonlinear Schrodinger equations
    Arbabi, Somayeh
    Najafi, Mohammad
    OPTIK, 2016, 127 (11): : 4682 - 4688
  • [9] Some new integrable nonlinear dispersive equations and their solitary wave solutions
    Yin Jiu-Li
    Fan Yu-Qin
    Zhang Juan
    Tian Li-Xin
    ACTA PHYSICA SINICA, 2011, 60 (08)
  • [10] Symbiotic bright solitary wave solutions of coupled nonlinear Schrodinger equations
    Lin, Tai-Chia
    Wei, Juncheng
    NONLINEARITY, 2006, 19 (12) : 2755 - 2773