An improved gridding method for spiral MRI using nonuniform fast Fourier transform

被引:41
|
作者
Sha, LW
Guo, H
Song, AW [2 ]
机构
[1] Duke Univ, Dept Elect & Comp Engn, Durham, NC 27710 USA
[2] Duke Univ, Med Ctr, Brain Imaging & Anal Ctr, Durham, NC 27710 USA
关键词
spiral MRI; reconstruction; NUFFT; LS_NUFFT; gridding;
D O I
10.1016/S1090-7807(03)00107-1
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The algorithm of Liu and Nguyen [IEEE Microw. Guided Wave Lett. 8 (1) (1998) 18; SIAM J. Sci. Comput. 21 (1) (1999) 283] for nonuniform fast Fourier transform (NUFFT) has been extended to two dimensions to reconstruct images using spiral MRI. The new gridding method, called LS_NUFFT, minimizes the reconstruction approximation error in the Least Square sense by generated convolution kernels that fit for the spiral k-space trajectories. For analytical comparison, the LS_NUFFT has been fitted into a consistent framework with the conventional gridding methods using Kaiser-Bessel gridding and a recently proposed generalized FFT (GFFT) approach. Experimental comparison was made by assessing the performance of the LS_NUFFT with that of the standard direct summation method and the Kaiser-Bessel gridding method, using both digital phantom data and in vivo experimental data. Because of the explicitly optimized convolution kernel in LS_NUFFT, reconstruction results showed that the LS_NUFFT yields smaller reconstruction approximation error than the Kaiser Bessel gridding method, but with the same computation complexity. (C) 2003 Elsevier Science (USA). All rights reserved.
引用
收藏
页码:250 / 258
页数:9
相关论文
共 50 条
  • [1] Nonuniform fast Fourier transform
    Duijndam, AJW
    Schonewille, MA
    GEOPHYSICS, 1999, 64 (02) : 539 - 551
  • [2] Iterative Image Reconstruction for PROPELLER-MRI Using the Nonuniform Fast Fourier Transform
    Tamhane, Ashish A.
    Anastasio, Mark A.
    Gui, Minzhi
    Arfanakis, Konstantinos
    JOURNAL OF MAGNETIC RESONANCE IMAGING, 2010, 32 (01) : 211 - 217
  • [3] Accelerating the Nonuniform Fast Fourier Transform using FPGAs
    Kestur, Srinidhi
    Park, Sungho
    Irick, Kevin M.
    Narayanan, Vijaykrishnan
    2010 18TH IEEE ANNUAL INTERNATIONAL SYMPOSIUM ON FIELD-PROGRAMMABLE CUSTOM COMPUTING MACHINES (FCCM 2010), 2010, : 19 - 26
  • [4] Improved Accuracy Factors for the Nonuniform Fast Fourier Transform (NUFFT) Algorithm
    Kuo, Jen-Tsai
    Lee, Hsin-Ying
    IEEE MICROWAVE AND WIRELESS COMPONENTS LETTERS, 2009, 19 (01) : 3 - 5
  • [5] NONUNIFORM FAST FOURIER TRANSFORM ON TPUS
    Lu, Tianjian
    Marin, Thibault
    Zhuo, Yue
    Chen, Yi-Fan
    Ma, Chao
    2021 IEEE 18TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2021, : 783 - 787
  • [6] A geometric nonuniform fast Fourier transform
    Sammis, Ian
    Strain, John
    JOURNAL OF COMPUTATIONAL PHYSICS, 2009, 228 (18) : 7086 - 7108
  • [7] Accelerating the nonuniform fast Fourier transform
    Greengard, L
    Lee, JY
    SIAM REVIEW, 2004, 46 (03) : 443 - 454
  • [8] Nonuniform sampled scalar diffraction calculation using nonuniform fast Fourier transform
    Shimobaba, Tomoyoshi
    Kakue, Takashi
    Oikawa, Minoru
    Okada, Naohisa
    Endo, Yutaka
    Hirayama, Ryuji
    Ito, Tomoyoshi
    OPTICS LETTERS, 2013, 38 (23) : 5130 - 5133
  • [9] IMPROVED METHOD FOR THE DISCRETE FAST FOURIER-TRANSFORM
    SORELLA, S
    GHOSH, SK
    REVIEW OF SCIENTIFIC INSTRUMENTS, 1984, 55 (08): : 1348 - 1352
  • [10] Fast algorithm for computing nonuniform Fourier transform
    Xiao, YC
    Wei, P
    Tai, HM
    CHINESE JOURNAL OF ELECTRONICS, 2006, 15 (01): : 117 - 119