Identification of some dietary flavonoids as potential inhibitors of TMPRSS2 through protein-ligand interaction studies and binding free energy calculations

被引:7
|
作者
Varughese, Jibin K. [1 ]
Kavitha, J. [1 ]
Sindhu, K. S. [1 ,2 ]
Francis, Dhiya [1 ]
Libin, Joseph K. L. [1 ]
Abi, T. G. [1 ,2 ]
机构
[1] Sacred Heart Coll Autonomous Thevara, Dept Chem, Kochi 682013, Kerala, India
[2] Morning Star Home Sci Coll, Dept Chem, Angamaly 683573, Kerala, India
关键词
TMPRSS2; COVID-19; Flavonoids; Molecular docking; Molecular dynamics; MOLECULAR-DYNAMICS; GROMACS;
D O I
10.1007/s11224-022-01955-7
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The continuing threat of COVID-19 and deaths need an urgent cost-effective pharmacological approach. Here, we examine the inhibitory activity of a group of dietary bioactive flavonoids against the human protease TMPRSS2, which plays a major role in SARS CoV-2 viral entry. After the molecular docking studies of a large number of flavonoids, four compounds with high binding scores were selected and studied in detail. The binding affinities of these four ligands, Amentoflavone, Narirutin, Eriocitrin, and Naringin, at the active site of the TMPRSS2 target, were investigated using MD simulations followed by MM-PBSA binding energy calculations. From the studies, a number of significant hydrophobic and hydrogen bonding interactions between the ligands and binding site amino residues of TMPRSS2 are identified which showcase their excellent inhibitory activity against TMPRSS2. Among these ligands, Amentoflavone and Narirutin showed MM-PBSA binding energy values of -155.57 and -139.71 kJ/mol, respectively. Our previous studies of the inhibitory activity of these compounds against the main protease of SARS-COV2 and the present study on TMPRSS2 strongly highlighted that Amentoflavone and Naringin can exhibit promising multi-target activity against SARS-CoV-2. Moreover, due to their wide availability, no side effects, and low cost, these compounds could be recommended as dietary supplements for COVID patients or for the development of SARS-CoV-2 treatments.
引用
收藏
页码:1489 / 1502
页数:14
相关论文
共 50 条
  • [1] Identification of some dietary flavonoids as potential inhibitors of TMPRSS2 through protein–ligand interaction studies and binding free energy calculations
    Jibin K. Varughese
    Kavitha J
    Sindhu K. S
    Dhiya Francis
    Joseph Libin K. L
    Abi T. G
    Structural Chemistry, 2022, 33 : 1489 - 1502
  • [2] Electrostatic polarization in protein-ligand binding free energy calculations
    Zhong, Yang
    Patel, Sandeep
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [3] Protein-ligand binding free energy calculations with conformational reservoirs
    Gallicchio, Emilio
    Lapelosa, Mauro
    Levy, Ronald M.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2011, 241
  • [4] Protein-ligand binding free energy calculations for challenging systems
    Abel, Robert
    Wang, Lingle
    Yu, Haoyu
    Chen, Wei
    Harder, Ed
    Deng, Yuqing
    Borrelli, Kenneth
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2018, 255
  • [5] Enhanced Ligand Sampling for Relative Protein-Ligand Binding Free Energy Calculations
    Kaus, Joseph W.
    McCammon, J. Andrew
    JOURNAL OF PHYSICAL CHEMISTRY B, 2015, 119 (20): : 6190 - 6197
  • [6] Grand Canonical Free-Energy Calculations of Protein-Ligand Binding
    Clark, Matthew
    Meshkat, Sia
    Wiseman, Jeffrey S.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2009, 49 (04) : 934 - 943
  • [7] Molecular modelling and free-energy calculations of protein-ligand binding
    Luzhkov, Viktor B.
    RUSSIAN CHEMICAL REVIEWS, 2017, 86 (03) : 211 - 230
  • [8] Improving the LIE Method for Binding Free Energy Calculations of Protein-Ligand Complexes
    Miranda, Williams E.
    Noskov, Sergei Yu.
    Valiente, Pedro A.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2015, 55 (09) : 1867 - 1877
  • [9] On Restraints in End-Point Protein-Ligand Binding Free Energy Calculations
    Menzer, William
    Xie, Bing
    Minh, David D. L.
    BIOPHYSICAL JOURNAL, 2019, 116 (03) : 47A - 47A
  • [10] The maximal and current accuracy of rigorous protein-ligand binding free energy calculations
    Gregory A. Ross
    Chao Lu
    Guido Scarabelli
    Steven K. Albanese
    Evelyne Houang
    Robert Abel
    Edward D. Harder
    Lingle Wang
    Communications Chemistry, 6