Codes on finite geometries

被引:115
|
作者
Tang, H [1 ]
Xu, J
Lin, S
Abdel-Ghaffar, KAS
机构
[1] PMC Sierra Inc, Sunnyvale, CA 97223 USA
[2] Marvell Semicond Inc, Sunnyvale, CA 94089 USA
[3] Univ Calif Davis, Dept Elect & Comp Engn, Davis, CA 95616 USA
基金
美国国家科学基金会; 美国国家航空航天局;
关键词
cyclic codes; Euclidean geometry; low-density parity-check (LDPC) codes; majority-logic decoding; projective geometry; quasi-cyclic codes; sum product algorithm;
D O I
10.1109/TIT.2004.840867
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
New algebraic methods for constructing codes based on hyperplanes of two different dimensions in finite geometries are presented. The new construction methods result in a class of multistep majority-logic decodable codes and three classes of low-density parity-check (LDPC) codes. Decoding methods for the class of majority-logic decodable codes, and a class of codes that perform well with iterative decoding in spite of having many cycles of length 4 in their Tanner graphs, are presented. Most of the codes constructed can be either put in cyclic or quasi-cyclic form and hence their encoding can be implemented with linear shift registers.
引用
收藏
页码:572 / 596
页数:25
相关论文
共 50 条
  • [1] Codes on finite geometries
    Lin, S
    Tang, H
    Kou, Y
    Xu, J
    Abdel-Ghaffar, K
    2001 IEEE INFORMATION THEORY WORKSHOP, PROCEEDINGS, 2001, : 14 - 16
  • [2] Toric codes and finite geometries
    Little, John B.
    FINITE FIELDS AND THEIR APPLICATIONS, 2017, 45 : 203 - 216
  • [3] Designs, codes and finite geometries - Preface
    Colbourn, CJ
    Shen, H
    DISCRETE MATHEMATICS, 2001, 238 (1-3) : 1 - 1
  • [4] Quantum Synchronizable Codes From Finite Geometries
    Fujiwara, Yuichiro
    Vandendriessche, Peter
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2014, 60 (11) : 7345 - 7354
  • [5] Absorbing sets of codes from finite geometries
    Beemer, Allison
    Haymaker, Kathryn
    Kelley, Christine A.
    CRYPTOGRAPHY AND COMMUNICATIONS-DISCRETE-STRUCTURES BOOLEAN FUNCTIONS AND SEQUENCES, 2019, 11 (05): : 1115 - 1131
  • [6] Absorbing sets of codes from finite geometries
    Allison Beemer
    Kathryn Haymaker
    Christine A. Kelley
    Cryptography and Communications, 2019, 11 : 1115 - 1131
  • [7] Linear codes over finite fields and finite projective geometries
    Landjev, IN
    DISCRETE MATHEMATICS, 2000, 213 (1-3) : 211 - 244
  • [8] Trapping Set Structure of LDPC Codes on Finite Geometries
    Diao, Qiuju
    Tai, Ying Yu
    Lin, Shu
    Abdel-Ghaffar, Khaled
    2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2013,
  • [9] Nonbinary quantum codes derived from finite geometries
    Clark, David
    Tonchev, Vladimir D.
    FINITE FIELDS AND THEIR APPLICATIONS, 2012, 18 (01) : 63 - 69
  • [10] Trapping Set Structure of LDPC Codes on Finite Geometries
    Diao, Qiuju
    Tai, Ying Yu
    Lin, Shu
    Abdel-Ghaffar, Khaled
    2013 INFORMATION THEORY AND APPLICATIONS WORKSHOP (ITA), 2013,