A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials

被引:1
|
作者
Swamy, S. R. [1 ]
Wanas, Abbas Kareem [2 ]
机构
[1] RV Coll Engn, Dept Comp Sci & Engn, Bengaluru 560059, Karnataka, India
[2] Univ Al Qadisiyah, Coll Sci, Dept Math, Diwaniyah, Iraq
来源
关键词
Fekete-Szego functional; Regular function; Bi-univalent function; (m; n)-Lucas polynomial; SUBCLASSES; FIBONACCI; (P;
D O I
10.1007/s40590-022-00411-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Making use of (m, n)-Lucas polynomials, we propose a comprehensive family of regular functions of the type g(z) = z + Sigma(infinity)(j=2) d(j)z(j) which are bi-univalent in the disc {z is an element of C : vertical bar z vertical bar<1}. We find estimates on the coefficients vertical bar d(2)vertical bar, vertical bar d(3)vertical bar and the of Fekete-Szego functional for members of this subfamily. Relevant connections to existing results and new consequences of the main result are also presented.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] A comprehensive family of bi-univalent functions defined by (m, n)-Lucas polynomials
    S. R. Swamy
    Abbas Kareem Wanas
    Boletín de la Sociedad Matemática Mexicana, 2022, 28
  • [2] Applications of (M, N)-Lucas Polynomials on a Certain Family of Bi-Univalent Functions
    Wanas, Abbas Kareem
    Cotirla, Luminita-Ioana
    MATHEMATICS, 2022, 10 (04)
  • [3] Bi-univalent functions of order ζ connected with (m, n)- Lucas polynomials
    Hadi, Sarem H.
    Darus, Maslina
    Bulboaca, Teodor
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2023, 31 (04): : 433 - 447
  • [4] Coefficient bounds and Fekete-Szego inequality for a certain family of holomorphic and bi-univalent functions defined by (M,N)-Lucas polynomials
    Wanas, Abbas Kareem
    Salagean, Grigore Stefan
    Orsolya, Pall-Szabo Agnes
    FILOMAT, 2023, 37 (04) : 1037 - 1044
  • [5] Coefficients bounds for a family of bi-univalent functions defined by Horadam polynomials
    Frasin, Basem A.
    Sailaja, Yerragunta
    Swamy, Sondekola R.
    Wanas, Abbas K.
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2022, 26 (01): : 25 - 32
  • [6] INITIAL BOUNDS FOR CERTAIN CLASSES OF BI-UNIVALENT FUNCTIONS DEFINED BY THE (p, q)-LUCAS POLYNOMIALS
    Magesh, N.
    Abirami, C.
    Altinkaya, S.
    TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (01): : 282 - 288
  • [7] Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Euler Polynomials
    Al-Hawary, Tariq
    Frasin, Basem
    Salah, Jamal
    SYMMETRY-BASEL, 2025, 17 (02):
  • [8] Coefficient bounds for a new family of bi-univalent functions associated with (U, V)-Lucas polynomials
    Shaba, Timilehin Gideon
    Wanas, Abbas Kareem
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2022, 13 (01): : 615 - 626
  • [9] Some Special Families of Holomorphic and Salagean Type Bi-univalent Functions Associated with (m,n)-Lucas Polynomials
    Swamy, S. R.
    Wanas, Abbas Kareem
    Sailaja, Y.
    COMMUNICATIONS IN MATHEMATICS AND APPLICATIONS, 2020, 11 (04): : 563 - 574
  • [10] Certain subclasses of bi-univalent functions defined by Chebyshev polynomials
    Sivasankari, V.
    Karthiyayini, O.
    Magesh, N.
    AFRIKA MATEMATIKA, 2021, 32 (1-2) : 89 - 103