Non-stationary magnetoencephalography by Bayesian filtering of dipole models

被引:38
|
作者
Somersalo, E
Voutilainen, A
Kaipio, JP
机构
[1] Helsinki Univ Technol, Inst Math, FIN-02015 Helsinki, Finland
[2] Univ Kuopio, Dept Appl Phys, FIN-70211 Kuopio, Finland
关键词
D O I
10.1088/0266-5611/19/5/304
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the biomagnetic inverse problem of estimating a time-varying source current from magnetic field measurements. It is assumed that the data are severely corrupted by measurement noise. This setting is a model for magnetoencephalography (MEG) when the dynamic nature of the source prevents us from effecting noise reduction by averaging over consecutive measurements. Thus, the potential applications of this approach include the single trial estimation of the brain activity, in particular from the spontaneous MEG data. Our approach is based on non-stationary Bayesian estimation, and we propose the use of particle filters. The source model in this work is either a single dipole or multiple dipole model. Part of the problem consists of the model determination. Numerical simulations are presented.
引用
收藏
页码:1047 / 1063
页数:17
相关论文
共 50 条
  • [1] FILTERING NON-STATIONARY SIGNALS
    ABDRABBO, NA
    PRIESTLE.MB
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1969, 31 (01) : 150 - &
  • [2] Exact fast optimal statistical filtering in linear models with non-stationary jumps
    Abbassi, Noufel
    Derrode, Stephane
    Desbouvries, Francois
    Petetin, Yohan
    Pieczynski, Wojciech
    TRAITEMENT DU SIGNAL, 2014, 31 (3-4) : 339 - 361
  • [3] Non-stationary filtering methods for audio signals
    Sarris, JC
    Dalianis, SA
    Cambourakis, GE
    ARCHITECTURAL ACOUSTICS AND SOUND REINFORCEMENT, 2002, : 377 - 382
  • [4] Bayesian estimation of non-stationary Markov models combining micro and macro data
    Storm, Hugo
    Heckelei, Thomas
    Mittelhammer, Ron C.
    EUROPEAN REVIEW OF AGRICULTURAL ECONOMICS, 2016, 43 (02) : 303 - 329
  • [5] Learning non-stationary dynamic bayesian networks
    Robinson, Joshua W.
    Hartemink, Alexander J.
    Journal of Machine Learning Research, 2010, 11 : 3647 - 3680
  • [6] Learning Non-Stationary Dynamic Bayesian Networks
    Robinson, Joshua W.
    Hartemink, Alexander J.
    JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 : 3647 - 3680
  • [7] Non-Stationary Bayesian Learning for Global Sustainability
    Bhardwaj, Kartikeya
    Marculescu, Radu
    IEEE TRANSACTIONS ON SUSTAINABLE COMPUTING, 2017, 2 (03): : 304 - 316
  • [8] Critical binding of an electron to a non-stationary electric dipole
    Garrett, W. R.
    CHEMICAL PHYSICS LETTERS, 1970, 5 (07) : 393 - 397
  • [9] Towards Non-Stationary Grid Models
    Tamás Éltető
    Cécile Germain-Renaud
    Pascal Bondon
    Michèle Sebag
    Journal of Grid Computing, 2011, 9 : 423 - 440
  • [10] Towards Non-Stationary Grid Models
    Elteto, Tamas
    Germain-Renaud, Cecile
    Bondon, Pascal
    Sebag, Michele
    JOURNAL OF GRID COMPUTING, 2011, 9 (04) : 423 - 440