Deep Learning-Based Obstacle Detection and Classification With Portable Uncalibrated Patterned Light

被引:17
|
作者
Cornacchia, Maria [1 ]
Kakillioglu, Burak [1 ]
Zheng, Yu [1 ]
Velipasalar, Senem [1 ]
机构
[1] Syracuse Univ, Dept Elect Engn & Comp Sci, Syracuse, NY 13244 USA
基金
美国国家科学基金会;
关键词
Structured light; activity classification; convolutional neural network; long-short term memory; obstacle detection; obstacle classification; NAVIGATION; SYSTEM; LASER;
D O I
10.1109/JSEN.2018.2865306
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Autonomous navigation and obstacle avoidance systems are critically relevant and important for visually impaired people, assisted driving applications, and autonomous robots. Even though there has been significant amount of work on obstacle detection and avoidance using LiDAR and camera data, there has not been much effort focusing on providing a lightweight, cost conscious, energy efficient, reliable, and portable solution for the visually impaired. We propose a new method for autonomous obstacle detection and classification, which incorporates a different and novel type of sensor, namely, patterned light field, with camera. The proposed device is small in size, easily carried, as well as low cost. The grid, projected by the patterned light source, is apparent and differentiable as the sensing system is hand carried in natural indoor and outdoor environments over and toward different types of obstacles. Our proposed approach exploits these patterns, without calibration, by employing deep learning techniques, including a convolutional neural network-based classification on individual frames. We further refine our approach by smoothing the frame-based classifications over multiple frames using long short-term memory units. The proposed method provides very promising results with overall detection and classification accuracies of 98.37% for the binary case as well as 95.97% and 92.62% for two different multi-class scenarios. These results represent the average number of sequences correctly detected and classified and were obtained on a sequence-based analysis of over 120 sequences from four different users.
引用
收藏
页码:8416 / 8425
页数:10
相关论文
共 50 条
  • [1] OBSTACLE DETECTION AND CLASSIFICATION WITH PORTABLE UNCALIBRATED PATTERNED PROJECTED LIGHT
    Cornacchia, Maria
    Zheng, Yu
    Kakillioglu, Burak
    Velipasalar, Senem
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 2230 - 2234
  • [2] Learning based obstacle detection with uncalibrated cameras
    Wu, T
    He, HG
    2002 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-4, PROCEEDINGS, 2002, : 1605 - 1607
  • [3] DEEP LEARNING-BASED OBSTACLE DETECTION AND DEPTH ESTIMATION
    Hsieh, Yi-Yu
    Lin, Wei-Yu
    Li, Dong-Lin
    Chuang, Jen-Hui
    2019 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2019, : 1635 - 1639
  • [4] Deep Learning-Based Attack Detection and Classification in Android Devices
    Gomez, Alfonso
    Munoz, Antonio
    ELECTRONICS, 2023, 12 (15)
  • [5] Deep Learning-Based ECG Classification for Arterial Fibrillation Detection
    Irshad, Muhammad Sohail
    Masood, Tehreem
    Jaffar, Arfan
    Rashid, Muhammad
    Akram, Sheeraz
    Aljohani, Abeer
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 79 (03): : 4805 - 4824
  • [6] Deep learning-based classification model for botnet attack detection
    Abdulghani Ali Ahmed
    Waheb A. Jabbar
    Ali Safaa Sadiq
    Hiran Patel
    Journal of Ambient Intelligence and Humanized Computing, 2022, 13 : 3457 - 3466
  • [7] A deep learning-based classification for topic detection of audiovisual documents
    Fourati, Manel
    Jedidi, Anis
    Gargouri, Faiez
    APPLIED INTELLIGENCE, 2023, 53 (08) : 8776 - 8798
  • [8] A deep learning-based classification for topic detection of audiovisual documents
    Manel Fourati
    Anis Jedidi
    Faiez Gargouri
    Applied Intelligence, 2023, 53 : 8776 - 8798
  • [9] Deep Learning-Based In-Band Interference Detection and Classification
    Andersson, Andreas
    Eliardsson, Patrik
    Axell, Erik
    Hagglund, Kristoffer
    Wiklundh, Kia
    IEEE TRANSACTIONS ON ELECTROMAGNETIC COMPATIBILITY, 2024, 66 (06) : 1958 - 1966
  • [10] Deep learning-based classification model for botnet attack detection
    Ahmed, Abdulghani Ali
    Jabbar, Waheb A.
    Sadiq, Ali Safaa
    Patel, Hiran
    JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 13 (7) : 3457 - 3466