QED commutation relations for inhomogeneous Kramers-Kronig dielectrics

被引:157
|
作者
Scheel, S [1 ]
Knoll, L [1 ]
Welsch, DG [1 ]
机构
[1] Univ Jena, Inst Theoret Phys, D-07743 Jena, Germany
来源
PHYSICAL REVIEW A | 1998年 / 58卷 / 01期
关键词
D O I
10.1103/PhysRevA.58.700
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Recently a quantization scheme for the phenomenological Maxwell theory of the full electromagnetic field in an inhomogeneous three-dimensional, dispersive, and absorbing dielectric medium has been developed and applied to a system consisting of two infinite half-spaces with a common planar interface (H.T. Dung, L. Knoll, and D.-G. Welsch, Phys. Rev. A 57, 3931 (1998)). Here we show that the scheme, which is based on the classical Green-tenser integral representation of the electromagnetic field, applies to any inhomogeneous medium. For this purpose we prove that the fundamental equal-time commutation relations of QED an preserved for an arbitrarily space-dependent, Kramers-Kronig consistent permittivity. Further, an extension of the quantization scheme to linear media with bounded regions of amplification is given, and the problem of anisotropic media is briefly addressed.
引用
收藏
页码:700 / 706
页数:7
相关论文
共 50 条
  • [1] On the Kramers-Kronig relations
    José M. Carcione
    Fabio Cavallini
    Jing Ba
    Wei Cheng
    Ayman N. Qadrouh
    Rheologica Acta, 2019, 58 : 21 - 28
  • [2] On the Kramers-Kronig relations
    Carcione, Jose M.
    Cavallini, Fabio
    Ba, Jing
    Cheng, Wei
    Qadrouh, Ayman N.
    RHEOLOGICA ACTA, 2019, 58 (1-2) : 21 - 28
  • [3] NOTE ON THE KRAMERS-KRONIG RELATIONS
    BRACHMAN, MK
    JOURNAL OF APPLIED PHYSICS, 1955, 26 (05) : 497 - 498
  • [4] Applications of Kramers-Kronig Relations
    Brezeanu, I. B.
    Paraschivoiu, P. A.
    Negroiu, R.
    Chiva, L. A.
    2017 IEEE 23RD INTERNATIONAL SYMPOSIUM FOR DESIGN AND TECHNOLOGY IN ELECTRONIC PACKAGING (SIITME), 2017, : 82 - 85
  • [5] Kramers-Kronig relations for an interferometer
    Kop, RHJ
    deVries, P
    Sprik, R
    Lagendijk, A
    OPTICS COMMUNICATIONS, 1997, 138 (1-3) : 118 - 126
  • [6] KRAMERS-KRONIG RELATIONS IN NONLINEAR OPTICS
    HUTCHINGS, DC
    SHEIKBAHAE, M
    HAGAN, DJ
    VANSTRYLAND, EW
    OPTICAL AND QUANTUM ELECTRONICS, 1992, 24 (01) : 1 - 30
  • [7] KRAMERS-KRONIG RELATIONS FOR INTERSTELLAR POLARIZATION
    MARTIN, PG
    ASTROPHYSICAL JOURNAL, 1975, 202 (02): : 389 - 392
  • [8] VALIDITY CONDITIONS FOR KRAMERS-KRONIG RELATIONS
    SHARNOFF, M
    AMERICAN JOURNAL OF PHYSICS, 1964, 32 (01) : 40 - &
  • [9] Kramers-Kronig relations for magnetoinductive waves
    Kalinin, Victor
    Solymar, Laszlo
    Shamonina, Ekaterina
    PHYSICAL REVIEW B, 2019, 100 (11)
  • [10] NUMERICAL EVALUATION OF KRAMERS-KRONIG RELATIONS
    EMEIS, CA
    OOSTERHOFF, LJ
    DEVRIES, G
    PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1967, 297 (1448) : 54 - +