Acceleration of Monte Carlo path tracing in general environments

被引:1
|
作者
Pérez, F
Martín, I
Sillion, FX
Pueyo, X
机构
关键词
D O I
10.1109/PCCGA.2000.883883
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
This paper describes a two pass algorithm capable of computing solutions to the global illumination in general environments (diffuse or glossy surfaces, anisotropically scattering participating media) faster than previous methods, by combining the strengths of finite element and Monte Carlo methods. A quick coarse solution is first computed with a clustered directional hierarchical method. This intermediate solution is used by a Monte Carlo method to accelerate computation of a final accurate solution by importance sampling, by means of Link Probabilities and adaptive probability density functions. Results from a first implementation of the algorithm for diffuse surfaces are presented.
引用
收藏
页码:71 / +
页数:8
相关论文
共 50 条
  • [1] Adaptive sampling with Renyi entropy in Monte Carlo path tracing
    Xu, Q
    Hu, RJ
    Xing, LP
    Xu, Y
    2005 IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Vols 1 and 2, 2005, : 784 - 788
  • [2] Offline Deep Importance Sampling for Monte Carlo Path Tracing
    Bako, Steve
    Meyer, Mark
    DeRose, Tony
    Sen, Pradeep
    COMPUTER GRAPHICS FORUM, 2019, 38 (07) : 527 - 542
  • [3] Monte Carlo Path Tracing and Statistical Event Detection for Event Camera Simulation
    Manabe, Yuichiro
    Yatagawa, Tatsuya
    Morishima, Shigeo
    Kubo, Hiroyuki
    2024 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL PHOTOGRAPHY, ICCP 2024, 2024,
  • [4] Microfacet-based Normal Mapping for Robust Monte Carlo Path Tracing
    Schussler, Vincent
    Heitz, Eric
    Hanika, Johannes
    Dachsbacher, Carsten
    ACM TRANSACTIONS ON GRAPHICS, 2017, 36 (06):
  • [5] Efficient bidirectional path tracing by randomized quasi-Monte Carlo integration
    Kollig, T
    Keller, A
    MONTE CARLO AND QUASI-MONTE CARLO METHODS 2000, 2002, : 290 - 305
  • [6] mmWave Propagation Prediction using Hardware-Accelerated Monte Carlo Path Tracing
    Francoeur, Xavier
    de Jong, Yvo
    Jones, Cooper
    Gracie, Ken
    Michelson, David G.
    2021 IEEE 19TH INTERNATIONAL SYMPOSIUM ON ANTENNA TECHNOLOGY AND APPLIED ELECTROMAGNETICS (ANTEM), 2021,
  • [7] Acceleration of PET Monte Carlo simulation using the graphics hardware ray-tracing engine
    Wang, Zhiguang
    Olcott, Peter. D.
    Levin, Craig S.
    2010 IEEE NUCLEAR SCIENCE SYMPOSIUM CONFERENCE RECORD (NSS/MIC), 2010, : 1848 - 1855
  • [8] Path shadowing Monte Carlo
    Morel, Rudy
    Mallat, Stephane
    Bouchaud, Jean-Philippe
    QUANTITATIVE FINANCE, 2024, 24 (09) : 1199 - 1225
  • [9] Acceleration of Proton Monte Carlo Simulations Using the Macro Monte Carlo Method
    Jacqmin, D.
    MEDICAL PHYSICS, 2012, 39 (06) : 3945 - 3945
  • [10] EVENT-BASED CAMERA SIMULATION USING MONTE CARLO PATH TRACING WITH ADAPTIVE DENOISING
    Tsuji, Yuta
    Yatagawa, Tatsuya
    Kubo, Hiroyuki
    Morishima, Shigeo
    2023 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2023, : 301 - 305