Two generalizations of projective modules and their applications

被引:40
|
作者
Wang, Fanggui [1 ]
Kim, Hwankoo [2 ]
机构
[1] Sichuan Normal Univ, Coll Math & Software Sci, Chengdu 610068, Sichuan, Peoples R China
[2] Hoseo Univ, Sch Comp & Informat Engn, Asan 336795, South Korea
基金
中国国家自然科学基金; 新加坡国家研究基金会;
关键词
INJECTIVE-MODULES; INTEGRAL-DOMAINS; W-MODULES; RING; IDEAL;
D O I
10.1016/j.jpaa.2014.07.025
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a commutative ring, M be an R-module, and w be the so-called w-operation on R. Set G(w) = {f is an element of R[X] vertical bar c(f)(w) = R}, where c(f) denotes the content of f. Let R{X} = R[X]G(w) and M{X} = M[X]G(w) be the w-Nagata ring of R and the w-Nagata module of M respectively. Then we introduce and study two concepts of w-projective modules and w-invertible modules, which both generalize projective modules. To do so, we use two main methods of which one is to localize at maximal w-ideals of R and the other is to utilize w-Nagata modules over w-Nagata rings. In particular, it is shown that an R-module M is w-projective of finite type if and only if M{X} is finitely generated projective over R{X}; M is w-invertible if and only if M{X} is invertible over R{X}. As applications, it is shown that R is semisimple if and only if every R-module is w-projective and that, in a Q(0)-PVMR, every finite type semi-regular module is w-projective. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:2099 / 2123
页数:25
相关论文
共 50 条
  • [1] On Generalizations of Projective QTAG-Modules
    Sikander, Fahad
    Begam, Firdhousi
    Fatima, Tanveer
    JOURNAL OF MATHEMATICS, 2023, 2023
  • [2] Direct Projective Modules, Direct Injective Modules, and their Generalizations
    Abyzov A.N.
    Tuganbaev A.A.
    Tapkin D.T.
    Cong Q.T.
    Journal of Mathematical Sciences, 2021, 258 (2) : 250 - 264
  • [3] Some Generalizations of Quasi-Projective Modules
    Kalebogaz, Berke
    Keskin-Tutuncu, Derya
    Smith, Patrick F.
    ALGEBRA COLLOQUIUM, 2015, 22 : 727 - 738
  • [4] Two generalizations of homology modules
    Zhao, Wei
    Chen, Mingzhao
    Pu, Yongyan
    Xiao, Xuelian
    COMMUNICATIONS IN ALGEBRA, 2024, 52 (05) : 1908 - 1921
  • [5] Applications of Gorenstein projective τ-rigid modules
    Liu, Hui
    Zhang, Xiaojin
    Zhang, Yingying
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2025,
  • [6] Almost projective modules and generalized projective modules
    Kikumasa, Isao
    Kuratomi, Yosuke
    Shibata, Yoshiharu
    COMMUNICATIONS IN ALGEBRA, 2022, 50 (10) : 4494 - 4509
  • [7] On the structure of pure-projective modules and some applications
    Moradzadeh-Dehkordi, Ali
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2017, 221 (04) : 935 - 947
  • [8] Applications of n-Gorenstein projective and injective modules
    Tang, Xi
    HACETTEPE JOURNAL OF MATHEMATICS AND STATISTICS, 2015, 44 (06): : 1435 - 1443
  • [9] τ-PROJECTIVE AND STRONGLY τ-PROJECTIVE MODULES
    Amin, Ismail
    Ibrahim, Yasser
    Yousif, Mohamed
    CONTEMPORARY RING THEORY 2011, 2012, : 209 - 235
  • [10] ON GENERALIZATIONS OF INJECTIVE MODULES
    Turkmen, Burcu Nisanci
    PUBLICATIONS DE L INSTITUT MATHEMATIQUE-BEOGRAD, 2016, 99 (113): : 249 - 255