Explicit Solutions for Generalized (2+1)-Dimensional Nonlinear Zakharov- Kuznetsov Equation
被引:7
|
作者:
Sun Yu-Huai
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R China
Sun Yu-Huai
[1
]
Ma Zhi-Min
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R China
Ma Zhi-Min
[1
]
Li Yan
论文数: 0引用数: 0
h-index: 0
机构:
Sichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R ChinaSichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R China
Li Yan
[1
]
机构:
[1] Sichuan Normal Univ, Inst Math & Software Sci, Chengdu 610066, Peoples R China
The exact solutions of the generalized (2+1)-dimensional nonlinear Zakharov-Kuznetsov(Z-K)equation are explored by the method of the improved generalized auxiliary differential equation. Many explicit analytic solutions of the Z-Kequation are obtained. The methods used to solve the Z-K equation can be employed in further work to establish new solutions for other nonlinear partial differential equations.
机构:
Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
Univ Austral Chile, Inst Ciencias Fis & Matemat, Valdivia, ChileDurban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
Paliathanasis, Andronikos
Leach, P. G. L.
论文数: 0引用数: 0
h-index: 0
机构:
Durban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa
Univ KwaZulu Natal, Sch Math Sci, Durban, South AfricaDurban Univ Technol, Inst Syst Sci, POB 1334, ZA-4000 Durban, South Africa