Tagged mapping class groups: Auslander-Reiten translation

被引:18
|
作者
Bruestle, Thomas [1 ]
Qiu, Yu [1 ,2 ]
机构
[1] Bishops Univ, Sherbrooke, PQ J1M 1Z7, Canada
[2] Norwegian Univ Sci & Technol, Dept Math Sci, N-7491 Trondheim, Norway
基金
加拿大自然科学与工程研究理事会;
关键词
Mapping class group; Auslander-Reiten translation; Triangulated surface; Cluster theory; Braid group; CLUSTER CATEGORIES; ALGEBRAS; QUIVERS;
D O I
10.1007/s00209-015-1405-z
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a geometric realization, the tagged rotation, of the AR-translation on the generalized cluster category associated to a surface with marked points and non-empty boundary, which generalizes Brustle-Zhang's result for the puncture free case. As an application, we show that the intersection of the shifts in the 3-Calabi-Yau derived category associated to the surface and the corresponding Seidel-Thomas braid group of is empty, unless is a polygon with at most one puncture (i.e. of type A or D).
引用
收藏
页码:1103 / 1120
页数:18
相关论文
共 50 条