Short-Term Residential Load Forecasting Using 2-Step SARIMAX

被引:6
|
作者
Kim, Taegon [1 ]
Jang, Minseok [1 ]
Jeong, Hyun Cheol [1 ]
Joo, Sung-Kwan [1 ]
机构
[1] Korea Univ, Sch Elect Engn, Seoul 02841, South Korea
基金
新加坡国家研究基金会;
关键词
Residential load; SARIMAX; Forecasting; Time series; Clustering;
D O I
10.1007/s42835-021-00917-z
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In contrast to city-level and larger aggregate-level load forecasting, load forecasting for residential customers is a much more challenging problem because residential loads are much more volatile. In order to forecast the residential load at one-hour interval 24-h loads the day before, a 2-Step SARIMAX method for residential load forecasting is proposed in this study. The forecasting performance of the proposed method is compared with the existing forecasting methods including SARIMA.
引用
收藏
页码:751 / 758
页数:8
相关论文
共 50 条
  • [1] Short-Term Residential Load Forecasting Using 2-Step SARIMAX
    Taegon Kim
    Minseok Jang
    Hyun Cheol Jeong
    Sung-Kwan Joo
    Journal of Electrical Engineering & Technology, 2022, 17 : 751 - 758
  • [2] Short-term load forecasting using a two-stage sarimax model
    Tarsitano, Agostino
    Amerise, Ilaria L.
    ENERGY, 2017, 133 : 108 - 114
  • [3] Residential Short-Term Load Forecasting Using Convolutional Neural Networks
    Voss, Marcus
    Bender-Saebelkampf, Christian
    Albayrak, Sahin
    2018 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CONTROL, AND COMPUTING TECHNOLOGIES FOR SMART GRIDS (SMARTGRIDCOMM), 2018,
  • [4] Federated Learning for Short-Term Residential Load Forecasting
    Briggs, Christopher
    Fan, Zhong
    Andras, Peter
    IEEE OPEN ACCESS JOURNAL OF POWER AND ENERGY, 2022, 9 : 573 - 583
  • [5] A Machine Learning-Based Algorithm for Short-Term SMP Forecasting Using 2-Step Method
    Shim, Sang Woo
    Lee, Da Han
    Roh, Jae Hyung
    Park, Jong-Bae
    JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY, 2023, 18 (03) : 1493 - 1501
  • [6] Research in residential electricity characteristics and short-term load forecasting
    Feng, H. (fenghaixiashiwo@163.com), 1600, Universitas Ahmad Dahlan, Jalan Kapas 9, Semaki, Umbul Harjo,, Yogiakarta, 55165, Indonesia (11):
  • [7] A dynamic ensemble method for residential short-term load forecasting
    Yu Yang
    Fan Jinfu
    Wang Zhongjie
    Zhu Zheng
    Xu Yukun
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 63 : 75 - 88
  • [8] A Machine Learning-Based Algorithm for Short-Term SMP Forecasting Using 2-Step Method
    Sang Woo Shim
    Da Han Lee
    Jae Hyung Roh
    Jong-Bae Park
    Journal of Electrical Engineering & Technology, 2023, 18 : 1493 - 1501
  • [9] Short-term load forecasting in non-residential Buildings
    Penya, Yoseba K.
    Borges, Cruz E.
    Fernandez, Ivan
    IEEE AFRICON 2011, 2011,
  • [10] An Short-Term Residential Load Forecasting Scheme Using Multi-Task Learning
    Wang Y.-F.
    Xiao C.-B.
    Chen Y.
    Jin Q.
    Beijing Youdian Daxue Xuebao/Journal of Beijing University of Posts and Telecommunications, 2021, 44 (03): : 47 - 52