机构:
Univ Sao Paulo, Dept Matemat, IME, BR-05314970 Sao Paulo, SP, BrazilUniv Sao Paulo, Dept Matemat, IME, BR-05314970 Sao Paulo, SP, Brazil
Goncalves, D.
[1
]
Skopenkov, A.
论文数: 0引用数: 0
h-index: 0
机构:
Moscow Inst Phys & Technol, Fac Innovat & High Technol, Dolgoprudnyi 141700, Russia
Independent Univ Moscow, Moscow 119002, RussiaUniv Sao Paulo, Dept Matemat, IME, BR-05314970 Sao Paulo, SP, Brazil
Skopenkov, A.
[2
,3
]
机构:
[1] Univ Sao Paulo, Dept Matemat, IME, BR-05314970 Sao Paulo, SP, Brazil
[2] Moscow Inst Phys & Technol, Fac Innovat & High Technol, Dolgoprudnyi 141700, Russia
[3] Independent Univ Moscow, Moscow 119002, Russia
We present a short proof of the following known result. Suppose X, Y are finite connected CW-complexes with free involutions, f: X -> Y is an eguivariant map, and l is a non-negative integer. If f* : H-i(Y) -> H-i(X) is an isomorphism for each i > l and is onto for i =l, then f(#): pi(i)(eq)(Y) -> pi(i)(eq)(X) is a 1-1 correspondence for i > l and is onto for i =l.
机构:
Univ Carlos III Madrid, Dept Matemat, Leganes 28911, SpainUniv Carlos III Madrid, Dept Matemat, Leganes 28911, Spain
Gaeta, G
NUOVO CIMENTO DELLA SOCIETA ITALIANA DI FISICA B-GENERAL PHYSICS RELATIVITY ASTRONOMY AND MATHEMATICAL PHYSICS AND METHODS,
1999,
114
(08):
: 973
-
982