Numerical optimization of a sum-of-rank-1 decomposition for n-dimensional order-p symmetric tensors

被引:1
|
作者
Kyrgyzov, Olexiy [1 ]
Erdogmus, Deniz [1 ]
机构
[1] Northeastern Univ, Dept Elect & Comp Engn, Boston, MA 02115 USA
基金
美国国家科学基金会;
关键词
Symmetric tensor decomposition; Iterative optimization; Basis vector frame;
D O I
10.1016/j.neucom.2010.06.013
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper, we present a sum-of-rank-1 type decomposition and its differential model for symmetric tensors and investigate the convergence properties of numerical gradient-based iterative optimization algorithms to obtain this decomposition. The decomposition we propose reinterprets the orthogonality property of the eigenvectors of symmetric matrices as a geometric constraint on the rank-1 matrix bases, which leads to a geometrically constrained eigenvector frame. Relaxing the orthogonality requirement, we developed a set of structured-bases that can be utilized to decompose any symmetric tensor into a similar constrained sum-of-rank-1 decomposition. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:3323 / 3327
页数:5
相关论文
共 4 条