Encoding candlesticks as images for pattern classification using convolutional neural networks

被引:43
|
作者
Chen, Jun-Hao [1 ]
Tsai, Yun-Cheng [1 ]
机构
[1] Soochow Univ, Taipei, Taiwan
关键词
Convolutional Neural Networks (CNN); Gramian Angular Field (GAF); Candlestick; Patterns Classification; Time-Series; Financial Vision; TRADING STRATEGIES; TIME-SERIES; PREDICTION; MODEL;
D O I
10.1186/s40854-020-00187-0
中图分类号
F8 [财政、金融];
学科分类号
0202 ;
摘要
Candlestick charts display the high, low, opening, and closing prices in a specific period. Candlestick patterns emerge because human actions and reactions are patterned and continuously replicate. These patterns capture information on the candles. According to Thomas Bulkowski's Encyclopedia of Candlestick Charts, there are 103 candlestick patterns. Traders use these patterns to determine when to enter and exit. Candlestick pattern classification approaches take the hard work out of visually identifying these patterns. To highlight its capabilities, we propose a two-steps approach to recognize candlestick patterns automatically. The first step uses the Gramian Angular Field (GAF) to encode the time series as different types of images. The second step uses the Convolutional Neural Network (CNN) with the GAF images to learn eight critical kinds of candlestick patterns. In this paper, we call the approach GAF-CNN. In the experiments, our approach can identify the eight types of candlestick patterns with 90.7% average accuracy automatically in real-world data, outperforming the LSTM model.
引用
收藏
页数:19
相关论文
共 50 条
  • [1] Encoding candlesticks as images for pattern classification using convolutional neural networks
    Jun-Hao Chen
    Yun-Cheng Tsai
    Financial Innovation, 6
  • [2] Defect classification in shearography images using convolutional neural networks
    Frohlich, Herberth Birck
    Fantin, Analucia Vieira
    Fonseca de Oliveira, Bernardo Cassimiro
    Willemann, Daniel Pedro
    Iervolino, Lucas Arrigoni
    Benedet, Mauro Eduardo
    Goncalves, Armando Albertazzi, Jr.
    2018 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2018,
  • [3] Classification of Images as Photographs or Paintings by Using Convolutional Neural Networks
    Miguel Lopez-Rubio, Jose
    Molina-Cabello, Miguel A.
    Ramos-Jimenez, Gonzalo
    Lopez-Rubio, Ezequiel
    ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2021, PT I, 2021, 12861 : 432 - 442
  • [4] Classification of Fashion Article Images using Convolutional Neural Networks
    Bhatnagar, Shobhit
    Ghosal, Deepanway
    Kolekar, Maheshkumar H.
    2017 FOURTH INTERNATIONAL CONFERENCE ON IMAGE INFORMATION PROCESSING (ICIIP), 2017, : 357 - 362
  • [5] Classification of Human Metaspread Images Using Convolutional Neural Networks
    Arora, Tanvi
    INTERNATIONAL JOURNAL OF IMAGE AND GRAPHICS, 2021, 21 (03)
  • [6] Human Classification in Aerial Images Using Convolutional Neural Networks
    Akshatha, K. R.
    Karunakar, A. K.
    Shenoy, B. Satish
    MACHINE LEARNING AND AUTONOMOUS SYSTEMS, 2022, 269 : 537 - 549
  • [7] Using convolutional neural networks for classification of malware represented as images
    Daniel Gibert
    Carles Mateu
    Jordi Planes
    Ramon Vicens
    Journal of Computer Virology and Hacking Techniques, 2019, 15 : 15 - 28
  • [8] Classification of Photo and Sketch Images Using Convolutional Neural Networks
    Sasaki, Kazuma
    Yamakawa, Madoka
    Sekiguchi, Kana
    Ogata, Tetsuya
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2016, PT II, 2016, 9887 : 283 - 290
  • [9] Using convolutional neural networks for classification of malware represented as images
    Gibert, Daniel
    Mateu, Carles
    Planes, Jordi
    Vicens, Ramon
    JOURNAL OF COMPUTER VIROLOGY AND HACKING TECHNIQUES, 2019, 15 (01) : 15 - 28
  • [10] Classification of Images of Childhood Pneumonia using Convolutional Neural Networks
    Saraiva, A. A.
    Fonseca Ferreira, N. M.
    de Sousa, Luciano Lopes
    Costa, Nator Junior C.
    Moura Sousa, Jose Vigno
    Santos, D. B. S.
    Valente, Antonio
    Soares, Salviano
    BIOIMAGING: PROCEEDINGS OF THE 12TH INTERNATIONAL JOINT CONFERENCE ON BIOMEDICAL ENGINEERING SYSTEMS AND TECHNOLOGIES, VOL 2, 2019, : 112 - 119