Reach set computation and control synthesis for discrete-time dynamical systems with disturbances

被引:23
|
作者
Kurzhanskiy, Alex A. [1 ]
Varaiya, Pravin [1 ]
机构
[1] Univ Calif Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
关键词
Ellipsoidal methods; Dynamic programming; Maxmin/minmax reachability; Closed-loop reach set; Backward reachability; Discrete-time linear systems;
D O I
10.1016/j.automatica.2011.02.009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The paper is devoted to the formulation of the reachability problem for discrete-time dynamical systems with disturbances. The concept of maxmin and minmax forward and backward reach sets is addressed. Invariance of the backward reach set is discussed. The emphasis of the paper is on discrete-time linear systems, for which the ellipsoidal computational method is described. The synthesis of maxmin and minmax closed-loop control for steering the system to a given target set using ellipsoidal backward reach set approximations is explained. The ellipsoidal method covered in the paper is implemented in the Ellipsoidal Toolbox for MATLAB, a popular collection of ellipsoidal calculus routines freely available online. (C) 2011 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1414 / 1426
页数:13
相关论文
共 50 条
  • [1] Robust control of set-valued discrete-time dynamical systems
    Baras, JS
    Patel, NS
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (01) : 61 - 75
  • [2] Control problems of discrete-time dynamical systems
    Hasegawa, Yasumichi
    Lecture Notes in Control and Information Sciences, 2013, 447
  • [3] Convex computation of the maximum controlled invariant set for discrete-time polynomial control systems
    Korda, Milan
    Henrion, Didier
    Jones, Colin N.
    2013 IEEE 52ND ANNUAL CONFERENCE ON DECISION AND CONTROL (CDC), 2013, : 7107 - 7112
  • [4] Control Problems of Discrete-Time Dynamical Systems ABC
    Hasegawa, Y. (yhasega@gifu-u.ac.jp), 1600, Springer Verlag, Tiergartenstrasse 17, Heidelberg, D-69121, Germany (447):
  • [5] Invariant set computation for constrained uncertain discrete-time linear systems
    Athanasopoulos, Nikolaos
    Bitsoris, George
    49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 5227 - 5232
  • [6] Optimal Finite Time Control for Discrete-Time Stochastic Dynamical Systems
    Lee, Junsoo
    Haddad, Wassim M.
    Lanchares, Manuel
    2022 AMERICAN CONTROL CONFERENCE, ACC, 2022, : 3500 - 3505
  • [7] ON POLYHEDRAL CONTROL SYNTHESIS FOR DYNAMICAL DISCRETE-TIME SYSTEMS UNDER UNCERTAINTIES AND STATE CONSTRAINTS
    Kostousova, Elena K.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2018, 38 (12) : 6149 - 6162
  • [8] Feedback control of Lyapunov exponents for discrete-time dynamical systems
    Chen, GR
    Lai, DJ
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1996, 6 (07): : 1341 - 1349
  • [9] Adaptive fuzzy logic control of discrete-time dynamical systems
    Jagannathan, S
    Vandegrift, MW
    Lewis, FL
    AUTOMATICA, 2000, 36 (02) : 229 - 241
  • [10] H∞ control of uncertain dynamical fuzzy discrete-time systems
    Cao, SG
    Rees, NW
    Feng, G
    IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2001, 31 (05): : 802 - 812