Localization of Fe2+ at an RTGR sequence within a DNA duplex explains preferential cleavage by Fe2+ and H2O2

被引:58
|
作者
Rai, P
Cole, TD
Wemmer, DE
Linn, S [1 ]
机构
[1] Univ Calif Berkeley, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[2] Univ Calif Berkeley, Biophys Grad Grp, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
关键词
Fenton reaction; DNA nicking; Fe2+ localization; H-1; NMR; paramagnetic signal broadening;
D O I
10.1006/jmbi.2001.5010
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nicking of duplex DNA by the iron-mediated Fenton reaction occurs preferentially at a limited number of sequences. Of these, purine-T-G-purine (RTGR) is of particular interest because it is a required element in the upstream regulatory regions of many genes involved in iron and oxidative-stress responses. In order to study the basis of this preferential nicking, NMR studies were undertaken on the RTGR-containing duplex oligonucleotide, d(CGCGATATGACACTAG)/d(CTAGTGTCATATCGCG). One-dimensional and two-dimensional H-1 NMR measurements show that Fe2+ interacts preferentially and reversibly at the ATGA site within the duplex at a rate that is rapid relative to the chemical-shift timescale, while selective paramagnetic NMR line-broadening of the T ATGA guanine H8 suggests that Fe2+ interacts with the guanine N7 moiety. Localization at this site is supported by Fe2+ titrations of a duplex containing a 7-deazaguanine substitution in place of the guanine in the ATGA sequence. The addition of a 100-fold excess of Mg2+ over Fe2+ does not affect the Fe2+-dependent broadening. When the ATGA site in the duplex is replaced by ATGT, an RTGR site (GTGA) is created on the opposite strand. Preferential iron localization then takes place at the 3' guanine in GTGA but no longer at the guanine in ATGT, consistent with the lack of preferential cleavage of ATGT sites relative to ATGA sites. (C) 2001 Academic Press.
引用
收藏
页码:1089 / 1101
页数:13
相关论文
共 50 条
  • [1] Study on removal of caramel color in wastewater by H2O2/Fe2+ and H2O2/Fe2+/UV
    左金龙
    李俊生
    车春波
    黄丽坤
    吴昌永
    彭赵旭
    哈尔滨商业大学学报(自然科学版), 2010, (06) : 660 - 661
  • [2] Degradation of melatonin by UV, UV/H2O2, Fe2+/H2O2 and UV/Fe2+/H2O2 processes
    Xu, Xiang-Rong
    Li, Xiao-Yan
    Li, Xiang-Zhong
    Li, Hua-Bin
    SEPARATION AND PURIFICATION TECHNOLOGY, 2009, 68 (02) : 261 - 266
  • [3] H2O2/Fe2+和H2O2/Fe2+/UV对废水焦糖色去除
    左金龙
    李俊生
    车春波
    黄丽坤
    吴昌永
    彭赵旭
    哈尔滨商业大学学报(自然科学版), 2010, 26 (06) : 660 - 661+666
  • [4] Utilization of NaOCl/Fe2+, HOCl/Fe2+, and H2O2/HOCl/Fe2+ systems for oxidative degradation of water solutions of dyes
    Prousek, J
    Dömötörová, J
    CHEMICKE LISTY, 2000, 94 (05): : 331 - 333
  • [5] The Catalytic Degradation of the Inflammatory Drug Diclofenac Sodium in Water by Fe2+/Persulfate, Fe2+/Peroxymonosulfate and Fe2+/H2O2 Processes: A Comparative Analysis
    Rehman, Faiza
    Ahmad, Waqas
    Parveen, Nazish
    Zakir, Syed Khuram
    Khan, Sanaullah
    Han, Changseok
    WATER, 2023, 15 (05)
  • [6] Mineralization and photodegradation of oxytetracycline by UV/H2O2/Fe2+ and UV/PS/Fe2+ process: quantification of radicals
    Ouahiba, Elkhir
    Chabani, Malika
    Assadi, Aymen Amin
    Abdeltif, Amrane
    Florence, Fourcade
    Souad, Bouafia
    RESEARCH ON CHEMICAL INTERMEDIATES, 2023, 49 (01) : 1 - 21
  • [7] Mineralization and photodegradation of oxytetracycline by UV/H2O2/Fe2+ and UV/PS/Fe2+ process: quantification of radicals
    Elkhir Ouahiba
    Malika Chabani
    Aymen Amin Assadi
    Amrane Abdeltif
    Fourcade Florence
    Bouafia Souad
    Research on Chemical Intermediates, 2023, 49 : 1 - 21
  • [8] INACTIVATION OF RIBONUCLEASE A BY FE2+ + H2O2 (FENTONS REAGENT)
    DELGADO, CJ
    SLOBODIAN, E
    BIOCHIMICA ET BIOPHYSICA ACTA, 1972, 268 (01) : 121 - +
  • [9] Characteristics of Fe2+/H2O2/UV oxidization process
    Yang, M
    Hu, J
    Ito, K
    ENVIRONMENTAL TECHNOLOGY, 1998, 19 (02) : 183 - 191
  • [10] O2 generation path in Fe2+/H2O2 system
    Zhao H.
    Gao X.
    Wang Z.
    Gao J.
    Huagong Xuebao, 6 (2625-2630): : 2625 - 2630