Electronic Medical Records for Genetic Research: Results of the eMERGE Consortium

被引:226
|
作者
Kho, Abel N. [1 ,2 ]
Pacheco, Jennifer A. [1 ]
Peissig, Peggy L. [3 ]
Rasmussen, Luke [3 ]
Newton, Katherine M. [4 ,5 ]
Weston, Noah [4 ]
Crane, Paul K. [6 ]
Pathak, Jyotishman [7 ]
Chute, Christopher G. [7 ]
Bielinski, Suzette J. [7 ]
Kullo, Iftikhar J. [8 ]
Li, Rongling [9 ]
Manolio, Teri A. [9 ]
Chisholm, Rex L. [1 ]
Denny, Joshua C. [10 ]
机构
[1] Northwestern Univ, Feinberg Sch Med, Chicago, IL 60611 USA
[2] Regenstrief Inst Inc, Indianapolis, IN 46202 USA
[3] Marshfield Clin Res Fdn, Marshfield, WI 54449 USA
[4] Grp Hlth Res Inst, Seattle, WA 98101 USA
[5] Univ Washington, Sch Publ Hlth, Seattle, WA 98104 USA
[6] Univ Washington, Sch Med, Seattle, WA 98104 USA
[7] Mayo Clin, Dept Hlth Sci Res, Rochester, MN 55905 USA
[8] Mayo Clin, Dept Internal Med, Rochester, MN 55905 USA
[9] NHGRI, Off Populat Genom, Bethesda, MD 20892 USA
[10] Vanderbilt Univ, Dept Biomed Informat & Med, Nashville, TN 37232 USA
关键词
HEALTH RECORDS; PERSONALIZED MEDICINE; HISTORY INFORMATION; DISCOVERY RESEARCH; AMBULATORY-CARE; QUALITY; DEMENTIA; IDENTIFICATION; NEIGHBORHOOD; ASSOCIATION;
D O I
10.1126/scitranslmed.3001807
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Clinical data in electronic medical records (EMRs) are a potential source of longitudinal clinical data for research. The Electronic Medical Records and Genomics Network (eMERGE) investigates whether data captured through routine clinical care using EMRs can identify disease phenotypes with sufficient positive and negative predictive values for use in genome-wide association studies (GWAS). Using data from five different sets of EMRs, we have identified five disease phenotypes with positive predictive values of 73 to 98% and negative predictive values of 98 to 100%. Most EMRs captured key information (diagnoses, medications, laboratory tests) used to define phenotypes in a structured format. We identified natural language processing as an important tool to improve case identification rates. Efforts and incentives to increase the implementation of interoperable EMRs will markedly improve the availability of clinical data for genomics research.
引用
收藏
页数:7
相关论文
共 50 条
  • [1] The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies
    McCarty, Catherine A.
    Chisholm, Rex L.
    Chute, Christopher G.
    Kullo, Iftikhar J.
    Jarvik, Gail P.
    Larson, Eric B.
    Li, Rongling
    Masys, Daniel R.
    Ritchie, Marylyn D.
    Roden, Dan M.
    Struewing, Jeffery P.
    Wolf, Wendy A.
    BMC MEDICAL GENOMICS, 2011, 4
  • [2] The eMERGE Network: A consortium of biorepositories linked to electronic medical records data for conducting genomic studies
    Catherine A McCarty
    Rex L Chisholm
    Christopher G Chute
    Iftikhar J Kullo
    Gail P Jarvik
    Eric B Larson
    Rongling Li
    Daniel R Masys
    Marylyn D Ritchie
    Dan M Roden
    Jeffery P Struewing
    Wendy A Wolf
    BMC Medical Genomics, 4
  • [3] Confronting real time ethical, legal, and social issues in the Electronic Medical Records and Genomics (eMERGE) Consortium
    Clayton, Ellen Wright
    Smith, Maureen
    Fullerton, Stephanie M.
    Burke, Wylie
    McCarty, Catherine A.
    Koenig, Barbara A.
    McGuire, Amy L.
    Beskow, Laura M.
    Dressler, Lynn
    Lemke, Amy A.
    Ramos, Erin M.
    Rodriguez, Laura Lyman
    GENETICS IN MEDICINE, 2010, 12 (10) : 616 - 620
  • [4] Merging Genomic Data for Research in the Electronic MEdical Records and GEnomics Network: Lessons Learned in eMERGE
    Ritchie, Marylyn D.
    Setia, Shefali Z.
    Armstrong, Gretta D.
    Armstrong, Loren
    Bradford, Yuki
    Crawford, Dana C.
    Crosslin, David R.
    de Andrade, Mariza
    Doheny, Kimberly F.
    Hayes, M. Geoffrey
    Jarvik, Gail P.
    Kullo, Iftiklhar
    Li, Rongling
    McCarty, Cathy A.
    Mirel, Daniel
    Olson, Lana
    Purcell, Shaun
    Pugh, Elizabeth W.
    Tromp, Gerard
    Kuivaniemi, Helena
    Lotay, Vaneet
    Gottesman, Omri
    Haines, Jonathan L.
    GENETIC EPIDEMIOLOGY, 2012, 36 (07) : 740 - 740
  • [5] Return of individual research results from genome-wide association studies: experience of the Electronic Medical Records and Genomics (eMERGE) Network
    Fullerton, Stephanie M.
    Wolf, Wendy A.
    Brothers, Kyle B.
    Clayton, Ellen Wright
    Crawford, Dana C.
    Denny, Joshua C.
    Greenland, Philip
    Koenig, Barbara A.
    Leppig, Kathleen A.
    Lindor, Noralane M.
    McCarty, Catherine A.
    McGuire, Amy L.
    Hinz, Eugenia R. McPeek
    Mirel, Daniel B.
    Ramos, Erin M.
    Ritchie, Marylyn D.
    Smith, Maureen E.
    Waudby, Carol J.
    Burke, Wylie
    Jarvik, Gail P.
    GENETICS IN MEDICINE, 2012, 14 (04) : 424 - 431
  • [6] The Electronic Medical Records and Genomics (eMERGE) Network: past, present, and future
    Gottesman, Omri
    Kuivaniemi, Helena
    Tromp, Gerard
    Faucett, W. Andrew
    Li, Rongling
    Manolio, Teri A.
    Sanderson, Saskia C.
    Kannry, Joseph
    Zinberg, Randi
    Basford, Melissa A.
    Brilliant, Murray
    Carey, David J.
    Chisholm, Rex L.
    Chute, Christopher G.
    Connolly, John J.
    Crosslin, David
    Denny, Joshua C.
    Gallego, Carlos J.
    Haines, Jonathan L.
    Hakonarson, Hakon
    Harley, John
    Jarvik, Gail P.
    Kohane, Isaac
    Kullo, Iftikhar J.
    Larson, Eric B.
    McCarty, Catherine
    Ritchie, Marylyn D.
    Roden, Dan M.
    Smith, Maureen E.
    Bottinger, Erwin P.
    Williams, Marc S.
    GENETICS IN MEDICINE, 2013, 15 (10) : 761 - 771
  • [7] Perspectives on electronic medical records adoption: electronic medical records (EMR) in outcomes research
    Belletti, Dan
    Zacker, Christopher
    Mullins, C. Daniel
    PATIENT-RELATED OUTCOME MEASURES, 2010, 1 : 29 - 37
  • [8] ELECTRONIC MEDICAL RECORDS AND GENOMICS (eMERGE) - using emr-linked biorepositories to expand genomic medicine research
    Jose, Sheethal
    Dayal, Jyoti
    Wiley, Kenneth L.
    Li, Rongling
    GENETIC EPIDEMIOLOGY, 2018, 42 (07) : 708 - 708
  • [9] Understanding genetic disease with electronic medical records
    Hannah Stower
    Nature Medicine, 2018, 24 : 898 - 898
  • [10] Understanding genetic disease with electronic medical records
    Stower, Hannah
    NATURE MEDICINE, 2018, 24 (07) : 898 - 898