The changes in physical, chemical and biological properties of chemical compounds decide about their biological activity. In this paper the molecular structure of alkali metal 3,4-dihydroxyphenylacetates is studied in comparison to 3,4-dihydroxyphenylacetic acid (3,4-DHPAA) using FT-IR, FT-Raman and UV-Vis spectroscopy as well as density functional theory (DFT) calculations. The B3LYP/6-311 + +G** method is used to calculate optimized geometrical structures of studied compounds, atomic charges (Mulliken, APT, NBO), dipole moments, energies as well as the wavenumbers and intensities of the bands in vibrational spectra. Theoretical parameters are compared to the experimental data. The relationship between spectroscopic parameters of studied compounds and their biological activity is analyzed. Antioxidant activity is studied using FRAP and DPPH methods. IC50 parameter is also calculated. Bacillus subtilis, Pseudomonas aeruginosa, Escherichia coli and Klebsiella oxytoca are used in microbiological analysis of 3,4-DHPAA as well as its sodium and potassium salts. (C) 2018 King Saud University.