Handcrafted versus deep learning radiomics for prediction of cancer therapy response (vol 1, pg e106, 2019)

被引:0
|
作者
Mak, R. H.
Aerts, H. J.
Hosny, A.
机构
来源
LANCET DIGITAL HEALTH | 2019年 / 1卷 / 04期
关键词
D O I
10.1016/S2589-7500(19)30078-0
中图分类号
R-058 [];
学科分类号
摘要
引用
收藏
页码:E160 / E160
页数:1
相关论文
共 50 条
  • [1] Handcrafted versus deep learning radiomics for prediction of cancer therapy response
    Hosny, Ahmed
    Aerts, Hugo J.
    Mak, Raymond H.
    LANCET DIGITAL HEALTH, 2019, 1 (03): : E106 - E107
  • [2] Deep versus handcrafted tensor radiomics features: application to survival prediction in head and neck cancer
    Salmanpour, M.
    Hosseinzadeh, M.
    Rezaeijo, S.
    Ramezani, M.
    Marandi, S.
    Einy, M.
    Rahmim, A.
    EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2022, 49 (SUPPL 1) : S245 - S246
  • [3] Deep versus Handcrafted Tensor Radiomics Features: Prediction of Survival in Head and Neck Cancer Using Machine Learning and Fusion Techniques
    Salmanpour, Mohammad R.
    Rezaeijo, Seyed Masoud
    Hosseinzadeh, Mahdi
    Rahmim, Arman
    DIAGNOSTICS, 2023, 13 (10)
  • [4] Deep Learning vs. Handcrafted Radiomics to Predict Chemoradiotherapy Response for Locally Advanced Cervical Cancer
    Park, S. H.
    Jeong, S.
    Yu, H.
    Woo, D.
    Chong, G. O.
    Han, H. S.
    Kim, J.
    INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2023, 117 (02): : E480 - E480
  • [5] Comparing deep learning and handcrafted radiomics to predict chemoradiotherapy response for locally advanced cervical cancer using pretreatment MRI
    Sungmoon Jeong
    Hosang Yu
    Shin-Hyung Park
    Dongwon Woo
    Seoung-Jun Lee
    Gun Oh Chong
    Hyung Soo Han
    Jae-Chul Kim
    Scientific Reports, 14
  • [6] Comparing deep learning and handcrafted radiomics to predict chemoradiotherapy response for locally advanced cervical cancer using pretreatment MRI
    Jeong, Sungmoon
    Yu, Hosang
    Park, Shin-Hyung
    Woo, Dongwon
    Lee, Seoung-Jun
    Chong, Gun Oh
    Han, Hyung Soo
    Kim, Jae-Chul
    SCIENTIFIC REPORTS, 2024, 14 (01)
  • [7] Machine Learning Prediction of Response to Cardiac Resynchronization Therapy: Improvement Versus Current Guidelines (vol 12, e007392, 2019)
    Feeny
    CIRCULATION-ARRHYTHMIA AND ELECTROPHYSIOLOGY, 2019, 12 (07):
  • [8] PET-CT Fusion Based Outcome Prediction in Lung Cancer using Deep and Handcrafted Radiomics Features and Machine Learning
    Gorji, Arman
    Jouzdani, Ali Fathi
    Sanati, Nima
    Hosseinzadeh, Mahdi
    Mahboubisarighieh, Ali
    Rezaeijo, Seyed Masoud
    Maghsudi, Mehdi
    Moore, Sara
    Bonnie, Leung
    Uribe, Carlos
    Ho, Cheryl
    Rahmim, Arman
    Salmanpour, Mohammad R.
    JOURNAL OF NUCLEAR MEDICINE, 2023, 64
  • [9] Ablation of amyloid precursor protein increases insulin-degrading enzyme levels and activity in brain and peripheral tissues (vol 316, pg E106, 2019)
    Kulas, J. A.
    Franklin, W. F.
    Smith, N. A.
    Manocha, G. D.
    Puig, K. L.
    Nagamoto-Combs, K.
    Hendrix, R. D.
    Taglialatela, G.
    Barger, S. W.
    Combs, C. K.
    AMERICAN JOURNAL OF PHYSIOLOGY-ENDOCRINOLOGY AND METABOLISM, 2019, 316 (02): : E345 - E345
  • [10] Personalized prediction of immunotherapy response in lung cancer patients using advanced radiomics and deep learning
    Liao, Chien-Yi
    Chen, Yuh-Min
    Wu, Yu-Te
    Chao, Heng-Sheng
    Chiu, Hwa-Yen
    Wang, Ting-Wei
    Chen, Jyun-Ru
    Shiao, Tsu-Hui
    Lu, Chia-Feng
    CANCER IMAGING, 2024, 24 (01)