Generic C plus plus Implementation of High-Performance BFS-RBF-based Mesh Motion Schemes

被引:0
|
作者
Gottschling, Peter [1 ,4 ]
Heinzl, Rene [2 ]
Weinhub, J. [2 ]
Kirchner, Nadejda [3 ]
Sauer, Martin
Klomfass, Arno [3 ]
Steinhardt, Cornelius [4 ]
Wensch, Joerg [4 ]
机构
[1] SimuNova UG, Helmholtzstr 10, D-01069 Dresden, Germany
[2] TU Wien, Inst Microelectron, Vienna, Austria
[3] EMI, Fraunhofer Inst High Speed Dynam, Simulation Dept, D-79104 Freiberg, Germany
[4] Tech Univ Dresden, D-01062 Dresden, Germany
关键词
Generic programming; Mesh Motion Algorithm; Radial Basis Function Interpolation; Breadth-First Search;
D O I
10.1063/1.3498140
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Multi-Dimensional fluid- and structural dynamics problems are solved by computational methods based on Arbitrary Lagrange Euler (ALE) formulation of the continuum mechanical conservation equations. The paper presents a new modification of the radial basis function (RBF) based mesh motion scheme, which combines the RBF interpolation with the breadth-first search (BFS) algorithm. In this emerging domain, it is still unknown which algorithmic approach is the most suitable. Therefore, we realized our C++ implementation on a high abstraction level enabling broad customization and easy extension for further algorithmic research without sacrificing performance.
引用
收藏
页码:1631 / +
页数:2
相关论文
共 32 条
  • [1] From C/C plus plus Code to High-Performance Dataflow Circuits
    Josipovic, Lana
    Guerrieri, Andrea
    Ienne, Paolo
    IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2022, 41 (07) : 2142 - 2155
  • [2] HPTT: A High-Performance Tensor Transposition C plus plus Library
    Springer, Paul
    Su, Tong
    Bientinesi, Paolo
    ARRAY'17: PROCEEDINGS OF THE 4TH ACM SIGPLAN INTERNATIONAL WORKSHOP ON LIBRARIES, LANGUAGES, AND COMPILERS FOR ARRAY PROGRAMMING, 2017, : 56 - 62
  • [3] Abstractions for C plus plus code optimizations in parallel high-performance applications
    Klepl, Jiri
    Smelko, Adam
    Rozsypal, Lukas
    Krulis, Martin
    PARALLEL COMPUTING, 2024, 121
  • [4] RcppArmadillo: Accelerating R with high-performance C plus plus linear algebra
    Eddelbuettel, Dirk
    Sanderson, Conrad
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2014, 71 : 1054 - 1063
  • [5] OMPC++ - A portable high-performance implementation of DSM using OpenC plus plus reflection
    Sohda, Y
    Ogawa, H
    Matsuoka, S
    PARALLEL AND DISTRIBUTED COMPUTING FOR SYMBOLIC AND IRREGULAR APPLICATIONS, 2000, : 316 - 320
  • [6] High-performance Python']Python-C plus plus bindings with PyPy and Cling
    Lavrijsen, Wim T. L. P.
    Dutta, Aditi
    PROCEEDINGS OF PYHPC2016: 6TH WORKSHOP ON PYTHON FOR HIGH-PERFORMANCE AND SCIENTIFIC COMPUTING, 2016, : 27 - 35
  • [7] A Simple Multithreaded C plus plus Framework for High-Performance Data Acquisition Systems
    Ingles, Rolando
    Perek, Piotr
    Orlikowski, Mariusz
    Napieralski, Andrzej
    2015 22ND INTERNATIONAL CONFERENCE MIXED DESIGN OF INTEGRATED CIRCUITS & SYSTEMS (MIXDES), 2015, : 153 - 157
  • [8] Parallel implementation of a Lagrangian-based model on an adaptive mesh in C plus plus : Application to sea-ice
    Samake, Abdoulaye
    Rampal, Pierre
    Bouillon, Sylvain
    Olason, Einar
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 350 : 84 - 96
  • [9] PiCo: High-performance data analytics pipelines in modern C plus
    Misale, Claudia
    Drocco, Maurizio
    Tremblay, Guy
    Martinelli, Alberto R.
    Aldinucci, Marco
    FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2018, 87 : 392 - 403
  • [10] Thrill: High-Performance Algorithmic Distributed Batch Data Processing with C plus
    Bingmann, Timo
    Axtmann, Michael
    Joebstl, Emanuel
    Lamm, Sebastian
    Huyen Chau Nguyen
    2016 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2016, : 172 - 183