On optimal terminal wealth under transaction costs

被引:24
|
作者
Cvitanic, J [1 ]
Wang, H
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Brown Univ, Div Appl Math, Providence, RI 02912 USA
基金
美国国家科学基金会;
关键词
transactions; optimal terminal wealth; random;
D O I
10.1016/S0304-4068(00)00066-5
中图分类号
F [经济];
学科分类号
02 ;
摘要
In this note, we show that the modern approach to the problem of maximizing expected utility from terminal wealth in financial markets, namely martingale/duality methodology, works also in the presence of proportional transaction costs. More precisely, we show that the optimal terminal wealth is given as the inverse of marginal utility evaluated at the random variable which is optimal for an appropriately defined dual problem. We thereby resolve a question left open by [Mathematical Finance 6 (1996) 133]. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:223 / 231
页数:9
相关论文
共 50 条
  • [1] Lagrange approach to optimal consumption and terminal wealth under transaction costs
    Deng, Feiqi
    Guo, Fuhua
    DYNAMICS OF CONTINUOUS DISCRETE AND IMPULSIVE SYSTEMS-SERIES B-APPLICATIONS & ALGORITHMS, 2006, 13 : 790 - 793
  • [2] Optimal proportional reinsurance and investment with transaction costs, I: Maximizing the terminal wealth
    Zhang, Xin-Li
    Zhang, Ke-Cun
    Yu, Xing-Jiang
    INSURANCE MATHEMATICS & ECONOMICS, 2009, 44 (03): : 473 - 478
  • [3] ON THE UNIQUENESS OF UNBOUNDED VISCOSITY SOLUTIONS ARISING IN AN OPTIMAL TERMINAL WEALTH PROBLEM WITH TRANSACTION COSTS
    Belak, Christoph
    Menkens, Olaf
    Sass, Joern
    SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (05) : 2878 - 2897
  • [4] Optimal consumption and investment under transaction costs*
    Hobson, David
    Tse, Alex S. L.
    Zhu, Yeqi
    MATHEMATICAL FINANCE, 2019, 29 (02) : 483 - 506
  • [5] Optimal investment under transaction costs for an insurer
    Thonhauser S.
    European Actuarial Journal, 2013, 3 (2) : 359 - 383
  • [6] An Portfolio Optimal Attainability under Transaction Costs
    Xu Shimeng
    Liu Junhong
    MECHANICAL SCIENCE AND ENGINEERING IV, 2014, 472 : 1066 - 1069
  • [7] Optimal risk and dividend strategies with transaction costs and terminal value
    Cheng, Gongpin
    Zhao, Yongxia
    ECONOMIC MODELLING, 2016, 54 : 522 - 536
  • [8] Optimal market timing strategies under transaction costs
    Li, W
    Lam, K
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2002, 30 (02): : 97 - 108
  • [9] Optimal dividends in the dual model under transaction costs
    Bayraktar, Erhan
    Kyprianou, Andreas E.
    Yamazaki, Kazutoshi
    INSURANCE MATHEMATICS & ECONOMICS, 2014, 54 : 133 - 143
  • [10] Optimal portfolio policies under fixed and proportional transaction costs
    Mathematisches Seminar, University of Kiel, Ludwig-Meyn-Strasse 4, D-24098 Kiel, Germany
    不详
    Adv Appl Probab, 2006, 4 (916-942):