Thermal state and solidification regime of the martian core: Insights from the melting behavior of FeNi-S at 20 GPa

被引:10
|
作者
Gilfoy, Forrest [1 ]
Li, Jie [1 ]
机构
[1] Univ Michigan, Dept Earth & Environm Sci, Room 3014,1100 North Univ, Ann Arbor, MI 48109 USA
关键词
Mars; core crystallization; dynamo; iron snow; phase diagram; liquidus curve; HIGH-PRESSURE; SULFUR-COMPOUND; PHASE-RELATIONS; FE-FE3S SYSTEM; BULK MODULUS; OUTER CORE; O SYSTEMS; IRON; MARS; FES;
D O I
10.1016/j.epsl.2020.116285
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
A series of multi-anvil experiments have been conducted to define the iron-rich liquidus of the iron-nickel-sulfur (FeNi-S) system at 20 GPa, the estimated pressure of the martian core-mantle boundary (CMB). The liquidus curve of FeNi-S containing about 9 wt.% Ni has a concave up shape, and is as much as 400 K lower than the liquidi previously applied to the martian core with sparse experimental constraints. Unlike existing liquidi of Fe-S and FeNi-S at 23 GPa, which predict a fully molten core for a narrow range of sulfur content between 14 and 15 wt.% S, our results are consistent with a molten state for all proposed core compositions, and establishes a new minimum CMB temperature of 1500 K for 10 wt.% S and 1250 K for 16 wt.% S. Extrapolating our FeNi-S liquidus to high pressures and comparing it to calculated areotherms, we find that three core crystallization regimes are possible. For a martian core with moderate sulfur content (10 to 13 wt.%) or lower, crystallization takes the form of iron snow near the CMB, while for cores with higher sulfur content (15-16 wt.%), solidification occurs near the center of the planet in the form of solid Fe3S. At an intermediate sulfur content of 14 wt.%, Fe3S would precipitate over a broad depth range and may appear fully molten to surface observations. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
empty
未找到相关数据