A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm

被引:61
|
作者
Guo, Jianchun [1 ]
Si, Zetian [1 ]
Xiang, Jiawei [1 ]
机构
[1] Wenzhou Univ, Coll Mech & Elect Engn, Wenzhou 325035, Peoples R China
基金
中国国家自然科学基金; 浙江省自然科学基金;
关键词
Wavelet scattering transform; Improved soft threshold denoising algorithm; Compound fault; Rolling bearing; KURTOSIS;
D O I
10.1016/j.measurement.2022.111276
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The vibration signal of faulty rolling bearing of rotating machine carries a large amount of information reflecting its fault categories. However, compound fault features are easily mixed together, and can cause missed diagnosis and misjudgment, which is still a challenging task in mechanical fault diagnosis. A compound fault detection method using wavelet scattering transform (WST) and an improved soft threshold denoising algorithm is proposed to extract compound faults in bearings. First, the wavelet scattering transform is used to calculate the original scattering coefficients from vibration signals. Second, the improved soft threshold denoising algorithm is applied to obtain the renewable scattering coefficients, which are further employed to reconstruct the denoising signals. Third, process the envelope spectrum analysis on the denoising signal to extract fault features. Finally, both the simulations and experiments in associate with comparison investigations proved that this method can effectively detect compound faults in bearings.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Rolling bearing fault diagnosis method based on improved wavelet threshold denoising
    Cao L.-L.
    Li J.
    Peng Z.
    Zhang Y.-F.
    Han W.-D.
    Fu H.-G.
    Zhendong Gongcheng Xuebao/Journal of Vibration Engineering, 2022, 35 (02): : 454 - 463
  • [2] An improved empirical wavelet transform method for rolling bearing fault diagnosis
    HUANG HaiRun
    LI Ke
    SU WenSheng
    BAI JianYi
    XUE ZhiGang
    ZHOU Lang
    SU Lei
    PECHT Michael
    Science China(Technological Sciences), 2020, (11) : 2231 - 2240
  • [3] An improved empirical wavelet transform method for rolling bearing fault diagnosis
    HaiRun Huang
    Ke Li
    WenSheng Su
    JianYi Bai
    ZhiGang Xue
    Lang Zhou
    Lei Su
    Michael Pecht
    Science China Technological Sciences, 2020, 63 : 2231 - 2240
  • [4] An improved empirical wavelet transform method for rolling bearing fault diagnosis
    Huang, HaiRun
    Li, Ke
    Su, WenSheng
    Bai, JianYi
    Xue, ZhiGang
    Zhou, Lang
    Su, Lei
    Pecht, Michael
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (11) : 2231 - 2240
  • [5] An improved empirical wavelet transform method for rolling bearing fault diagnosis
    HUANG HaiRun
    LI Ke
    SU WenSheng
    BAI JianYi
    XUE ZhiGang
    ZHOU Lang
    SU Lei
    PECHT Michael
    Science China(Technological Sciences), 2020, 63 (11) : 2231 - 2240
  • [6] An improved empirical wavelet transform method for rolling bearing fault diagnosis
    Huang, Hai Run
    Li, Ke
    Su, Wen Sheng
    Bai, Jian Yi
    Xue, Zhi Gang
    Zhou, Lang
    Su, Lei
    Pecht, Michael
    Science China Technological Sciences, 2020, 63 (11): : 2231 - 2240
  • [7] Rolling bearing fault diagnosis based on improved adaptive parameterless empirical wavelet transform and sparse denoising
    Li, Jimeng
    Wang, Hui
    Wang, Xiangdong
    Zhang, Yungang
    MEASUREMENT, 2020, 152 (152)
  • [8] Extraction and diagnosis of rolling bearing fault signals based on improved wavelet transform
    Cheng, Zhiqing
    JOURNAL OF MEASUREMENTS IN ENGINEERING, 2023, 11 (04) : 420 - 436
  • [9] Rolling Bearing Fault Diagnosis Based on Second Generation Wavelet Denoising and Improved EEMD
    Meng, Lingjie
    Xiang, Jiawei
    MECHATRONICS ENGINEERING, COMPUTING AND INFORMATION TECHNOLOGY, 2014, 556-562 : 2677 - 2680
  • [10] Improved Threshold Denoising Method Based on Wavelet Transform
    Cui Huimin
    Zhao Ruimei
    Hou Yanli
    2012 INTERNATIONAL CONFERENCE ON MEDICAL PHYSICS AND BIOMEDICAL ENGINEERING (ICMPBE2012), 2012, 33 : 1354 - 1359