A class of unitarily invariant norms on B(H)

被引:18
|
作者
Chan, JT [1 ]
Li, CK
Tu, CCN
机构
[1] Univ Hong Kong, Dept Math, Hong Kong, Hong Kong, Peoples R China
[2] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
关键词
s-number; extreme point; exposed point; isometric isomorphism;
D O I
10.1090/S0002-9939-00-05692-6
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let H be a complex Hilbert space and let B(H) be the algebra of all bounded linear operators on H. For c = (c(1),...,c(k)), where c(1) greater than or equal to ... greater than or equal to c(k) > 0 and p greater than or equal to 1, define the (c, p)-norm of A is an element of B(H) by [GRAPHICS] where si(A) denotes the ith s-numbers of A. In this paper we study some basic properties of this norm and give a characterization of the extreme points of its closed unit ball. Using these results, we obtain a description of the corresponding isometric isomorphisms on B(H).
引用
收藏
页码:1065 / 1076
页数:12
相关论文
共 50 条
  • [1] UNITARILY INVARIANT NORMS RELATED TO THE NUMERICAL RADIUS ON B(H)
    Alizadeh, R.
    Asadi, M. B.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2013, 16 (03): : 697 - 699
  • [2] Unitarily invariant norms on operators
    Jor-Ting Chan
    Chi-Kwong Li
    Acta Scientiarum Mathematicarum, 2022, 88 : 611 - 625
  • [3] Inequalities for unitarily invariant norms
    Zhan, XZ
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 1998, 20 (02) : 466 - 470
  • [4] Monotonicity of unitarily invariant norms
    Wang, Xue-Feng
    Li, Ren-Cang
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2015, 466 : 254 - 266
  • [5] INEQUALITIES FOR UNITARILY INVARIANT NORMS
    Zou, Limin
    Jiang, Youyi
    JOURNAL OF MATHEMATICAL INEQUALITIES, 2012, 6 (02): : 279 - 287
  • [6] Unitarily invariant norms on operators
    Chan, Jor-Ting
    Li, Chi-Kwong
    ACTA SCIENTIARUM MATHEMATICARUM, 2022, 88 (3-4): : 611 - 625
  • [7] Isometries for unitarily invariant norms
    Chan, JT
    Li, CK
    Sze, NS
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2005, 399 : 53 - 70
  • [8] Operator inequalities of Hölder type for unitarily invariant norms
    Jianguo Zhao
    Junliang Wu
    Positivity, 2017, 21 : 1495 - 1506
  • [9] Some inequalities for unitarily invariant norms
    Matharu, Jagjit Singh
    Aujla, Jaspal Singh
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2012, 436 (06) : 1623 - 1631
  • [10] INEQUALITIES OF UNITARILY INVARIANT NORMS FOR MATRICES
    Wu, Xuesha
    ITALIAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2018, (40): : 28 - 33