A comparison of three strategies for forecasting warranty claims
被引:0
|
作者:
Wasserman, GS
论文数: 0引用数: 0
h-index: 0
机构:
FORD MOTOR CO, ADV VEHICLE TECHNOL & POWERTRAIN OPERAT, DEARBORN, MI 48121 USAFORD MOTOR CO, ADV VEHICLE TECHNOL & POWERTRAIN OPERAT, DEARBORN, MI 48121 USA
Wasserman, GS
[1
]
Sudjianto, A
论文数: 0引用数: 0
h-index: 0
机构:
FORD MOTOR CO, ADV VEHICLE TECHNOL & POWERTRAIN OPERAT, DEARBORN, MI 48121 USAFORD MOTOR CO, ADV VEHICLE TECHNOL & POWERTRAIN OPERAT, DEARBORN, MI 48121 USA
Sudjianto, A
[1
]
机构:
[1] FORD MOTOR CO, ADV VEHICLE TECHNOL & POWERTRAIN OPERAT, DEARBORN, MI 48121 USA
The economic necessity for developing accurate forecasts of extended warranty costs on durable goods is established. Three strategies for forecasting warranty failures are outlined. The first strategy encompasses the use of linear, predictive models, wherein forecasts are based upon an extrapolation of a least squares fit of the data. These include regression and time series approaches. The risks associated with the use of these models when localized or highly nonlinear phenomena exists are illustrated. The second strategy is based upon the use of dynamic linear models wherein the model parameter estimates are updated sequentially by using the equations for the Kalman filter. The adaptive nature of these models leads to improved forecasts in the presence of localized phenomena. The third strategy encompasses the use of nonparametric modeling approaches, including the use of neural network models to provide a generalized, form-free modeling framework. With a constructed example, the comparative advantage in the use of a neural network representation is demonstrated through the use of a cross-validation strategy to identify and compare the best model in each class of models under consideration.
机构:
Univ Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USAUniv Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USA
Chehade, Abdallah
Savargaonkar, Mayuresh
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USAUniv Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USA
Savargaonkar, Mayuresh
Krivtsov, Vasiliy
论文数: 0引用数: 0
h-index: 0
机构:
Ford Motor Co, Reliabil Analyt, Detroit, MI 48126 USA
Univ Maryland, Reliabil Engn, College Pk, MD 20742 USAUniv Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USA
机构:
Ford Motor Co, Dearborn, MI USAFord Motor Co, Dearborn, MI USA
Babakmehr, Mohammad
Baumanns, Sascha
论文数: 0引用数: 0
h-index: 0
机构:
Ford Res & Innovat Ctr Aachen, Aachen, GermanyFord Motor Co, Dearborn, MI USA
Baumanns, Sascha
Chehade, Abdallah
论文数: 0引用数: 0
h-index: 0
机构:
Univ Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI USA
Univ Michigan, Dept Ind & Mfg Syst Engn, Dearborn, MI 48128 USAFord Motor Co, Dearborn, MI USA
Chehade, Abdallah
Hochkirchen, Thomas
论文数: 0引用数: 0
h-index: 0
机构:
Ford Res & Innovat Ctr Aachen, Aachen, GermanyFord Motor Co, Dearborn, MI USA
Hochkirchen, Thomas
Kalantari, Mahdokht
论文数: 0引用数: 0
h-index: 0
机构:
Ford Motor Co, Dearborn, MI USAFord Motor Co, Dearborn, MI USA
Kalantari, Mahdokht
Krivtsov, Vasiliy
论文数: 0引用数: 0
h-index: 0
机构:
Ford Motor Co, Dearborn, MI USA
Univ Maryland, College Pk, MD USAFord Motor Co, Dearborn, MI USA
Krivtsov, Vasiliy
Schindler, David
论文数: 0引用数: 0
h-index: 0
机构:
Ford Res & Innovat Ctr Aachen, Aachen, GermanyFord Motor Co, Dearborn, MI USA