Unpaired Real-World Super-Resolution with Pseudo Controllable Restoration

被引:4
|
作者
Romero, Andres [1 ]
Van Gool, Luc [1 ,2 ]
Timofte, Radu [1 ,3 ]
机构
[1] Swiss Fed Inst Technol, Comp Vis Lab, Zurich, Switzerland
[2] Katholieke Univ Leuven, Leuven, Belgium
[3] Univ Wurzburg, Wurzburg, Germany
关键词
D O I
10.1109/CVPRW56347.2022.00095
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Current super-resolution methods rely on the bicubic down-sampling assumption in order to develop the ill-posed reconstruction of the low-resolution image. Not surprisingly, these approaches fail when using real-world low-resolution images due to the presence of artifacts and intrinsic noise absent in the bicubic setup. Consequently, attention is increasingly paid to techniques that alleviate this problem and super-resolve real-world images. As acquiring paired real-world datasets is a challenging problem, real-world super-resolution solutions are traditionally tackled as a blind problem or as an unpaired data-driven problem. The former makes assumptions about the down-sampling operations, the latter uses unpaired training to learn the real distributions. Recently, blind approaches have dominated this problem by assuming a diverse bank of degradations, whereas the unpaired solutions have shown under-performance due to the two-staged training. In this paper, we propose an unpaired real-world super-resolution method that performs on par, or even better than blind paired approaches by introducing a pseudo-controllable restoration module in a fully end-to-end system.
引用
收藏
页码:797 / 806
页数:10
相关论文
共 50 条
  • [1] Simple and Efficient Unpaired Real-world Super-Resolution using Image Statistics
    Yoon, Kwangjin
    2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021), 2021, : 1983 - 1990
  • [2] Learning Many-to-Many Mapping for Unpaired Real-World Image Super-Resolution and Downscaling
    Sun, Wanjie
    Chen, Zhenzhong
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 9874 - 9889
  • [3] Real-World Thermal Image Super-Resolution
    Allahham, Moaaz
    Aakerberg, Andreas
    Nasrollahi, Kamal
    Moeslund, Thomas B.
    ADVANCES IN VISUAL COMPUTING (ISVC 2021), PT I, 2021, 13017 : 3 - 14
  • [4] Unsupervised Learning for Real-World Super-Resolution
    Lugmayr, Andreas
    Danelljan, Martin
    Timofte, Radu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3408 - 3416
  • [5] Frequency Separation for Real-World Super-Resolution
    Fritsche, Manuel
    Gu, Shuhang
    Timofte, Radu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW), 2019, : 3599 - 3608
  • [6] Real-World Super-Resolution with Residual Consistency
    Saritas, Erdi
    Ekenel, Hazim Kemal
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,
  • [7] Jointly Super Resolution and Degradation Learning on Unpaired Real-World Images
    Chen, Xuankun
    Chen, Junhong
    Zhang, Dongyu
    PARALLEL AND DISTRIBUTED COMPUTING, APPLICATIONS AND TECHNOLOGIES, PDCAT 2021, 2022, 13148 : 495 - 503
  • [8] Semantic Segmentation Guided Real-World Super-Resolution
    Aakerberg, Andreas
    Johansen, Anders S.
    Nasrollahi, Kamal
    Moeslund, Thomas B.
    2022 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION WORKSHOPS (WACVW 2022), 2022, : 449 - 458
  • [9] StarSRGAN: Improving Real-World Blind Super-Resolution
    Vo K.D.
    Bui L.T.
    Computer Science Research Notes, 2023, 31 (1-2): : 62 - 72
  • [10] Investigating Tradeoffs in Real-World Video Super-Resolution
    Chan, Kelvin C. K.
    Zhou, Shangchen
    Xu, Xiangyu
    Loy, Chen Change
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 5952 - 5961