Fractal fractional based transmission dynamics of COVID-19 epidemic model

被引:28
|
作者
Liu, Peijiang [1 ,2 ]
Rahman, Mati ur [3 ]
Din, Anwarud [4 ]
机构
[1] Guangdong Univ Finance & Econ, Sch Stat & Math, Big Data & Educ Stat Applicat Lab, Guangzhou, Peoples R China
[2] Guangdong Univ Finance & Econ, Sch Stat & Math, Guangzhou, Peoples R China
[3] Shanghai Jiao Tong Univ, Dept Math, Shanghai, Peoples R China
[4] Sun Yat Sen Univ, Dept Math, Guangzhou, Peoples R China
关键词
COVID-19 epidemic model; fractal-fractional order problem; stability analysis; real statistic; Iterative technique of Adams-Bashforth; newton polynomial;
D O I
10.1080/10255842.2022.2040489
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We investigate the dynamical behavior of Coronavirus (COVID-19) for different infections phases and multiple routes of transmission. In this regard, we study a COVID-19 model in the context of fractal-fractional order operator. First, we study the COVID-19 dynamics with a fractal fractional-order operator in the framework of Atangana-Baleanu fractal-fractional operator. We estimated the basic reduction number and the stability results of the proposed model. We show the data fitting to the proposed model. The system has been investigated for qualitative analysis. Novel numerical methods are introduced for the derivation of an iterative scheme of the fractal-fractional Atangana-Baleanu order. Finally, numerical simulations are performed for various orders of fractal-fractional dimension.
引用
收藏
页码:1852 / 1869
页数:18
相关论文
共 50 条
  • [1] Dynamics of a fractional order mathematical model for COVID-19 epidemic transmission
    Arshad, Sadia
    Siddique, Imran
    Nawaz, Fariha
    Shaheen, Aqila
    Khurshid, Hina
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2023, 609
  • [2] Dynamics of a fractional order mathematical model for COVID-19 epidemic
    Zhang, Zizhen
    Zeb, Anwar
    Egbelowo, Oluwaseun Francis
    Erturk, Vedat Suat
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [3] Dynamics of a fractional order mathematical model for COVID-19 epidemic
    Zizhen Zhang
    Anwar Zeb
    Oluwaseun Francis Egbelowo
    Vedat Suat Erturk
    Advances in Difference Equations, 2020
  • [4] Fractional order epidemic model for the dynamics of novel COVID-19
    Baba, Isa Abdullahi
    Nasidi, Bashir Ahmad
    ALEXANDRIA ENGINEERING JOURNAL, 2021, 60 (01) : 537 - 548
  • [5] A COVID-19 epidemic model with periodicity in transmission and environmental dynamics
    Assan, Belthasara
    Nyabadza, Farai
    FRONTIERS IN APPLIED MATHEMATICS AND STATISTICS, 2023, 9
  • [6] Transmission dynamics of the COVID-19 epidemic in England
    Liu, Yang
    Tang, Julian W.
    Lam, Tommy T. Y.
    INTERNATIONAL JOURNAL OF INFECTIOUS DISEASES, 2021, 104 : 132 - 138
  • [7] SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order
    Shahram Rezapour
    Hakimeh Mohammadi
    Mohammad Esmael Samei
    Advances in Difference Equations, 2020
  • [8] SEIR epidemic model for COVID-19 transmission by Caputo derivative of fractional order
    Rezapour, Shahram
    Mohammadi, Hakimeh
    Samei, Mohammad Esmael
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [9] Fractional-Order SEIQRDP Model for Simulating the Dynamics of COVID-19 Epidemic
    Bahloul, Mohamed A.
    Chahid, Abderrazak
    Laleg-Kirati, Taous-Meriem
    IEEE OPEN JOURNAL OF ENGINEERING IN MEDICINE AND BIOLOGY, 2020, 1 : 249 - 256
  • [10] On fractal-fractional Covid-19 mathematical model
    Khan, Hasib
    Ahmad, Farooq
    Tunc, Osman
    Idrees, Muhammad
    CHAOS SOLITONS & FRACTALS, 2022, 157