Estimation of the intensity of non-homogeneous point processes via wavelets

被引:6
|
作者
Simon de Miranda, Jose Carlos [1 ]
Morettin, Pedro A. [1 ]
机构
[1] Inst Math & Stat, Dept Stat, BR-05311970 Sao Paulo, Brazil
基金
巴西圣保罗研究基金会;
关键词
Intensity; Non-internally correlated point processes; Point processes; Poisson processes; Threshold; Wavelets; SHRINKAGE;
D O I
10.1007/s10463-010-0283-8
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this article we consider the problem of estimating the intensity of a non-homogeneous point process on the real line. The approach used is via wavelet expansions. Estimators of the intensity are proposed and their properties are studied, including the case of thresholded versions. Properties of the estimators for non-homogeneous Poisson processes follow as special cases. An application is given for the series of daily Dow Jones indices. Extensions to more general settings are also indicated.
引用
收藏
页码:1221 / 1246
页数:26
相关论文
共 50 条
  • [1] Estimation of the intensity of non-homogeneous point processes via wavelets
    José Carlos Simon de Miranda
    Pedro A. Morettin
    Annals of the Institute of Statistical Mathematics, 2011, 63 : 1221 - 1246
  • [2] ML Estimation of Intensity Function in Non-homogeneous Poisson Processes
    Anjale Ramesh
    Manoharan M.
    Operations Research Forum, 6 (2)
  • [3] Intensity estimation of non-homogeneous Poisson processes from shifted trajectories
    Bigot, Jeremie
    ELECTRONIC JOURNAL OF STATISTICS, 2013, 7 : 881 - 931
  • [4] Kernel based Estimation for a Non-Homogeneous Poisson Processes
    Jin, Tian
    ENERGY AND POWER TECHNOLOGY, PTS 1 AND 2, 2013, 805-806 : 1948 - 1951
  • [5] Multiple Pitch Estimation Using Non-Homogeneous Poisson Processes
    Peeling, Paul H.
    Godsill, Simon J.
    IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, 2011, 5 (06) : 1133 - 1143
  • [6] Modelling non-homogeneous Poisson processes with almost periodic intensity functions
    Shao, Nan
    Lii, Keh-Shin
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 2011, 73 : 99 - 122
  • [7] The nhppp package for simulating non-homogeneous Poisson point processes in R
    Trikalinos, Thomas A.
    Sereda, Yuliia
    PLOS ONE, 2024, 19 (11):
  • [8] Bayesian modeling and decision theory for non-homogeneous Poisson point processes
    Chen, Jiaxun
    Micheas, Athanasios C.
    Holan, Scott H.
    SPATIAL STATISTICS, 2020, 36
  • [9] Nonparametric estimation of the jump rate for non-homogeneous marked renewal processes
    Azais, Romain
    Dufour, Francois
    Gegout-Petit, Anne
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2013, 49 (04): : 1204 - 1231
  • [10] Testing of two sample proportional intensity assumption for non-homogeneous Poisson processes
    Deshpande, JV
    Mukhopadhyay, M
    Naik-Nimbalkar, UV
    JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 1999, 81 (02) : 237 - 251