Estimation of urban temperature and humidity using a lumped parameter model coupled with an Energy Plus model

被引:26
|
作者
Martin, Miguel [1 ]
Afshari, Afshin [1 ]
Armstrong, Peter R. [1 ]
Norford, Leslie K. [2 ]
机构
[1] Masdar Inst Sci & Technol, Abu Dhabi, U Arab Emirates
[2] MIT, Cambridge, MA 02139 USA
关键词
Building energy model; Urban canopy model; Urban specific humidity; Urban temperature; HEAT-ISLAND; SIMULATION;
D O I
10.1016/j.enbuild.2015.02.047
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
In this paper, we describe a lumped thermal parameter model coupled with an EnergyPlus model used for estimating temperature and specific humidity in the near-surface urban environment. Estimations made by the model are compared to measurements obtained from data loggers installed in an urban canyon of Masdar Institute (Abu Dhabi). Based on these comparisons, we first evaluate the most likely ratios of heat released into the urban canyon by a building air handling unit and the wind tower that produces adiabatically cooled air. Next, we analyze three specific case studies to obtain a local estimate of the accuracy that is reached by the coupled scheme. To estimate its global precision, we perform a sensitivity and Monte-Carlo analysis over the most likely ratios of heat emitted by the air handling unit and the wind tower. Although validation in a dense downtown is still lacking and will be undertaken in the future, this study suggests that urban temperature and humidity can be estimated with an acceptable accuracy under moderate waste heat releases and anthropogenic heat gains. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:221 / 235
页数:15
相关论文
共 50 条
  • [1] Parameterization and validation of a lumped parameter diffusion model for fuel cell stack membrane humidity estimation
    McKay, D
    Stefanopoulou, A
    PROCEEDINGS OF THE 2004 AMERICAN CONTROL CONFERENCE, VOLS 1-6, 2004, : 816 - 821
  • [2] Sequential Monte Carlo for on-line parameter estimation of a lumped building energy model
    Rouchier, Simon
    Jose Jimenez, Maria
    Castano, Sergio
    ENERGY AND BUILDINGS, 2019, 187 : 86 - 94
  • [3] Estimation of Optimal Values for Lumped Elements in a Finite Element - Lumped Parameter Model of a Loudspeaker
    Nielsen, Daniel Gert
    Andersen, Peter Risby
    Jensen, Jakob Sondergaard
    Agerkvist, Finn Thomas
    JOURNAL OF THEORETICAL AND COMPUTATIONAL ACOUSTICS, 2020, 28 (02):
  • [4] A Lumped Parameter Model for Cardiac Output Estimation Using Arterial Blood Pressure Waveform
    Sahoo, Karuna P.
    Patra, Amit
    Ghosh, Nirmalya
    Pal, Arpan
    Sinha, Aniruddha
    Khandelwal, Sundeep
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 5523 - 5526
  • [5] Latency prediction of earmuff using a lumped parameter model
    Zhong, Xu
    Zhang, Dong
    Applied Acoustics, 2021, 176
  • [6] Latency prediction of earmuff using a lumped parameter model
    Zhong, Xu
    Zhang, Dong
    APPLIED ACOUSTICS, 2021, 176
  • [7] A High Precision Lumped Parameter Model for Piezoelectric Energy Harvesters
    Baishya, Srimanta
    Borthakur, Debarun
    Kashyap, Richik
    Chatterjee, Amitabh
    IEEE SENSORS JOURNAL, 2017, 17 (24) : 8350 - 8355
  • [8] Parameter optimization for a temperature estimation model
    Smith, JC
    Ortega, A
    Gabel, CM
    Henderson, D
    ADVANCES IN ELECTRONIC PACKAGING 2003, VOL 1, 2003, : 505 - 512
  • [9] Estimation of mean radiant temperature in cities using an urban parameterization and building energy model within a mesoscale atmospheric model
    Jin, Luxi
    Schubert, Sebastian
    Fenner, Daniel
    Salim, Mohamed Hefny
    Schneider, Christoph
    METEOROLOGISCHE ZEITSCHRIFT, 2022, 31 (01) : 31 - 52
  • [10] Numerical investigation of multiphase blood flow coupled with lumped parameter model of outflow
    Melka, Bartlomiej
    Adamczyk, Wojciech P.
    Rojczyk, Marek
    Nowak, Marcin L.
    Gracka, Maria
    Nowak, Andrzej J.
    Golda, Adam
    Bialecki, Ryszard A.
    Ostrowski, Ziemowit
    INTERNATIONAL JOURNAL OF NUMERICAL METHODS FOR HEAT & FLUID FLOW, 2020, 30 (01) : 228 - 244