Equivariant Freudenthal theorem and equivariant n-movability

被引:0
|
作者
Gevorkian, PS
机构
关键词
D O I
10.1070/RM2001v056n01ABEH000363
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
[No abstract available]
引用
收藏
页码:156 / 157
页数:2
相关论文
共 50 条
  • [1] N-MOVABILITY
    BORSUK, K
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1972, 20 (10): : 859 - 864
  • [2] On the n-movability of maps
    Gevorgyan, P. S.
    Pop, I.
    TOPOLOGY AND ITS APPLICATIONS, 2017, 221 : 309 - 325
  • [3] Equivariant movability of topological groups
    Gevorgyan, P. S.
    TOPOLOGY AND ITS APPLICATIONS, 2012, 159 (07) : 1761 - 1766
  • [4] NOTE ON N-MOVABILITY AND SK-MOVABILITY
    ONO, J
    PROCEEDINGS OF THE JAPAN ACADEMY, 1976, 52 (02): : 52 - 54
  • [5] BORSUKS N-MOVABILITY
    KODAMA, Y
    WATANABE, T
    BULLETIN DE L ACADEMIE POLONAISE DES SCIENCES-SERIE DES SCIENCES MATHEMATIQUES ASTRONOMIQUES ET PHYSIQUES, 1974, 22 (03): : 289 - 294
  • [6] A characterization of equivariant absolute extensors and the equivariant Dugundji theorem
    Antonyan, SA
    HOUSTON JOURNAL OF MATHEMATICS, 2005, 31 (02): : 451 - 462
  • [7] On the equivariant Hopf theorem
    Ferrario, DL
    TOPOLOGY, 2003, 42 (02) : 447 - 465
  • [8] AN EQUIVARIANT SPHERE THEOREM
    DUNWOODY, MJ
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 1985, 17 (SEP) : 437 - 448
  • [9] THE EQUIVARIANT THEOREM OF DUGUNDJI
    AGEEV, SM
    RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (05) : 219 - 220
  • [10] Equivariant Hopf Theorem
    Balanov, Zalman
    Nonlinear Analysis, Theory, Methods and Applications, 1997, 30 (06): : 3463 - 3474