Chebyshev polynomials, Catalan numbers, and tridiagonal matrices

被引:0
|
作者
Artisevich, A. E. [1 ]
Bychkov, B. S. [2 ]
Shabat, A. B. [3 ]
机构
[1] Adyghe State Univ, Maykop, Russia
[2] Natl Res Univ Higher Sch Econ, Moscow, Russia
[3] RAS, Landau Inst Theoret Phys, Moscow, Russia
关键词
Chebyshev polynomial; tridiagonal matrix;
D O I
10.1134/S0040577920070016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We establish a relation between linear second-order difference equations corresponding to Chebyshev polynomials and Catalan numbers. The latter are the limit coefficients of a converging series of rational functions corresponding to the Riccati equation. As the main application, we show a relation between the polynomials phi(n)(mu) that are solutions of the problem of commutation of a tridiagonal matrix with the simplest Vandermonde matrix and Chebyshev polynomials.
引用
收藏
页码:837 / 842
页数:6
相关论文
共 50 条
  • [1] Chebyshev polynomials, Catalan numbers, and tridiagonal matrices
    A. E. Artisevich
    B. S. Bychkov
    A. B. Shabat
    Theoretical and Mathematical Physics, 2020, 204 : 837 - 842
  • [2] On the connection between tridiagonal matrices, Chebyshev polynomials, and Fibonacci numbers
    da Fonseca, Carlos M.
    ACTA UNIVERSITATIS SAPIENTIAE-MATHEMATICA, 2020, 12 (02) : 280 - 286
  • [3] ON GENERALIZATIONS OF CHEBYSHEV POLYNOMIALS AND CATALAN NUMBERS
    Bychkov, B. S.
    Shabat, G. B.
    UFA MATHEMATICAL JOURNAL, 2021, 13 (02): : 8 - 14
  • [4] On Chebyshev polynomials and the inertia of certain tridiagonal matrices
    Castillo, K.
    da Fonseca, C. M.
    Petronilho, J.
    APPLIED MATHEMATICS AND COMPUTATION, 2024, 467
  • [5] SOME TRIDIAGONAL DETERMINANTS RELATED TO CENTRAL DELANNOY NUMBERS, THE CHEBYSHEV POLYNOMIALS, AND THE FIBONACCI POLYNOMIALS
    Qi, F.
    Cernanova, V
    Semenov, Y. S.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2019, 81 (01): : 123 - 136
  • [6] Some tridiagonal determinants related to central delannoy numbers, the chebyshev polynomials, and the fibonacci polynomials
    Qi, F.
    Čerňanová, V.
    Semenov, Y.S.
    UPB Scientific Bulletin, Series C: Electrical Engineering and Computer Science, 2019, 81 (01): : 123 - 136
  • [7] Some tridiagonal determinants related to central delannoy numbers, the chebyshev polynomials, and the fibonacci polynomials
    Qi, F.
    Čerňanová, V.
    Semenov, Y.S.
    UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2019, 81 (01): : 123 - 136
  • [8] ON CHEBYSHEV POLYNOMIALS OF MATRICES
    Faber, Vance
    Liesen, Joerg
    Tichy, Petr
    SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS, 2010, 31 (04) : 2205 - 2221
  • [9] Chebyshev polynomials on symmetric matrices
    Erdmann, Karin
    Schroll, Sibylle
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2011, 434 (12) : 2475 - 2496
  • [10] On Chebyshev polynomials and Fibonacci numbers
    Zhang, WP
    FIBONACCI QUARTERLY, 2002, 40 (05): : 424 - 428