Note about the isochronicity of Hamiltonian systems and the curvature of the energy

被引:0
|
作者
Herrera, Blas [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Tarragona 43007, Spain
关键词
Hamiltonian systems; Gauss curvature; isochronous center;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this note we show the relationship between the period of a isochronous center of a planar Hamiltonian system and the Gauss curvature of the surface 5 = (x, y, H(x, y)) where H is the energy function of the system.
引用
收藏
页码:415 / 418
页数:4
相关论文
共 50 条
  • [1] Isochronicity for several classes of Hamiltonian systems
    Cima, A
    Manosas, F
    Villadelprat, J
    JOURNAL OF DIFFERENTIAL EQUATIONS, 1999, 157 (02) : 373 - 413
  • [2] Isochronicity of plane polynomial Hamiltonian systems
    Gavrilov, L
    NONLINEARITY, 1997, 10 (02) : 433 - 448
  • [3] Isochronicity and linearizability of planar polynomial Hamiltonian systems
    Llibre, Jaume
    Romanovski, Valery G.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 259 (05) : 1649 - 1662
  • [4] Non-isochronicity of the center in polynomial Hamiltonian systems
    Wang, Zhaoxia
    Chen, Xingwu
    Zhang, Weinian
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (01) : 228 - 243
  • [5] ISOCHRONICITY FOR TRIVIAL QUINTIC AND SEPTIC PLANAR POLYNOMIAL HAMILTONIAN SYSTEMS
    Braun, Francisco
    Llibre, Jaume
    Mereu, Ana C.
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2016, 36 (10) : 5245 - 5255
  • [6] Non-isochronicity on piecewise Hamiltonian differential systems with homogeneous nonlinearities
    Chen, Xiaoyi
    Dong, Guangfeng
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2024, 39 (04): : 653 - 664
  • [7] The curvature and hyperbolicity of Hamiltonian systems
    Agrachev A.A.
    Proceedings of the Steklov Institute of Mathematics, 2007, 256 (1) : 26 - 46
  • [8] Hamiltonian systems of negative curvature are hyperbolic
    Agrachev, AA
    Shcherbakova, NN
    DOKLADY MATHEMATICS, 2005, 71 (01) : 49 - 52
  • [9] On the Curvature and Heat Flow on Hamiltonian Systems
    Ohta, Shin-ichi
    ANALYSIS AND GEOMETRY IN METRIC SPACES, 2014, 2 (01): : 81 - 114
  • [10] Note on integrability of certain homogeneous Hamiltonian systems in 2D constant curvature spaces
    Maciejewski, Andrzej J.
    Szuminski, Wojciech
    Przybylska, Maria
    PHYSICS LETTERS A, 2017, 381 (07) : 725 - 732