Imbalance: Oversampling algorithms for imbalanced classification in R

被引:59
|
作者
Cordon, Ignacio [1 ]
Garcia, Salvador [1 ]
Fernandez, Alberto [1 ]
Herrera, Francisco [1 ]
机构
[1] Univ Granada, DaSCI Andalusian Inst Data Sci & Computat Intelli, Granada, Spain
关键词
Oversampling; Imbalanced classification; Machine learning; Preprocessing; SMOTE; SOFTWARE; SMOTE;
D O I
10.1016/j.knosys.2018.07.035
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Addressing imbalanced datasets in classification tasks is a relevant topic in research studies. The main reason is that for standard classification algorithms, the success rate when identifying minority class instances may be adversely affected. Among different solutions to cope with this problem, data level techniques have shown a robust behavior. In this paper, the novel imbalance package is introduced. Written in R and C++, and available at CRAN repository, this library includes recent relevant oversampling algorithms to improve the quality of data in imbalanced datasets, prior to performing a learning task. The main features of the package, as well as some illustrative examples of its use are detailed throughout this manuscript. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:329 / 341
页数:13
相关论文
共 50 条
  • [1] OVERSAMPLING METHOD FOR IMBALANCED CLASSIFICATION
    Zheng, Zhuoyuan
    Cai, Yunpeng
    Li, Ye
    COMPUTING AND INFORMATICS, 2015, 34 (05) : 1017 - 1037
  • [2] Adaptive Oversampling for Imbalanced Data Classification
    Ertekin, Seyda
    INFORMATION SCIENCES AND SYSTEMS 2013, 2013, 264 : 261 - 269
  • [3] Integrated Oversampling for Imbalanced Time Series Classification
    Cao, Hong
    Li, Xiao-Li
    Woon, David Yew-Kwong
    Ng, See-Kiong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2013, 25 (12) : 2809 - 2822
  • [4] Distributional Random Oversampling for Imbalanced Text Classification
    Moreo, Alejandro
    Esuli, Andrea
    Sebastiani, Fabrizio
    SIGIR'16: PROCEEDINGS OF THE 39TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, 2016, : 805 - 808
  • [5] Minority oversampling for imbalanced time series classification
    Zhu, Tuanfei
    Luo, Cheng
    Zhang, Zhihong
    Li, Jing
    Ren, Siqi
    Zeng, Yifu
    KNOWLEDGE-BASED SYSTEMS, 2022, 247
  • [6] Novel Oversampling Algorithm for Handling Imbalanced Data Classification Novel Oversampling Algorithm
    More, Anjali S.
    Rana, Dipti P.
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2022, 13 (08) : 491 - 496
  • [7] Model-Based Oversampling for Imbalanced Sequence Classification
    Gong, Zhichen
    Chen, Huanhuan
    CIKM'16: PROCEEDINGS OF THE 2016 ACM CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, 2016, : 1009 - 1018
  • [8] Gaussian Distribution Based Oversampling for Imbalanced Data Classification
    Xie, Yuxi
    Qiu, Min
    Zhang, Haibo
    Peng, Lizhi
    Chen, Zhenxiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (02) : 667 - 679
  • [9] Counterfactual-based minority oversampling for imbalanced classification
    Wang, Shu
    Luo, Hao
    Huang, Shanshan
    Li, Qingsong
    Liu, Li
    Su, Guoxin
    Liu, Ming
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 122
  • [10] Noise-robust oversampling for imbalanced data classification
    Liu, Yongxu
    Liu, Yan
    Yu, Bruce X. B.
    Zhong, Shenghua
    Hu, Zhejing
    PATTERN RECOGNITION, 2023, 133