Hermitian Adjacency Spectrum of Cayley Digraphs over Dihedral Group

被引:2
|
作者
Li, Honghai [1 ]
Yu, Teng [1 ]
机构
[1] Jiangxi Normal Univ, Coll Math & Informat Sci, Nanchang 330022, Jiangxi, Peoples R China
基金
中国国家自然科学基金;
关键词
digraph; dihedral group; Hermitian adjacency matrix; Cay-DS; 3-DCI property;
D O I
10.1142/S1005386720000103
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We first study the spectrum of Hermitian adjacency matrix (H-spectrum) of Cayley digraphs X(D-2n, S) on dihedral group D-2n, with vertical bar S vertical bar = 3. Then we show that all Cayley digraphs X(D-2p,S) with vertical bar S vertical bar = 3 and p odd prime are Cay-DS, namely, for any Cayley digraph X(D-2p, T), X (D-2p, T) and X(D-2p, S) having the same H-spectrum implies that they are isomorphic.
引用
收藏
页码:121 / 130
页数:10
相关论文
共 50 条
  • [1] Construction of Cospectral Cayley Digraphs over Dihedral Group D 6p
    Yang, Jing
    Tang, Lang
    Liu, Weijun
    Feng, Lihua
    ALGEBRA COLLOQUIUM, 2024, 31 (04) : 629 - 638
  • [2] ON HAMILTON CIRCUITS IN CAYLEY DIGRAPHS OVER GENERALIZED DIHEDRAL GROUPS
    Pastine, Adrian
    Jaume, Daniel
    REVISTA DE LA UNION MATEMATICA ARGENTINA, 2012, 53 (02): : 79 - 87
  • [3] The Adjacency Spectrum of Subgroup Graphs of Dihedral Group
    Abdussakir
    Akhadiyah, D. A.
    Layali, A.
    Putra, A. T.
    FIRST INTERNATIONAL CONFERENCE ON ENVIRONMENTAL GEOGRAPHY AND GEOGRAPHY EDUCATION (ICEGE), 2019, 243
  • [4] Cayley digraphs with normal adjacency matrices
    Lyubshin, David S.
    Savchenko, Sergey V.
    DISCRETE MATHEMATICS, 2009, 309 (13) : 4343 - 4348
  • [5] Hermitian Adjacency Matrix of Digraphs and Mixed Graphs
    Guo, Krystal
    Mohar, Bojan
    JOURNAL OF GRAPH THEORY, 2017, 85 (01) : 217 - 248
  • [6] Normal Cayley digraphs of dihedral groups with the CI-property*
    Xie, Jin-Hua
    Feng, Yan-Quan
    Zhou, Jin-Xin
    ARS MATHEMATICA CONTEMPORANEA, 2023, 23 (04)
  • [7] Quantum walks defined by digraphs and generalized Hermitian adjacency matrices
    Sho Kubota
    Etsuo Segawa
    Tetsuji Taniguchi
    Quantum Information Processing, 2021, 20
  • [8] Quantum walks defined by digraphs and generalized Hermitian adjacency matrices
    Kubota, Sho
    Segawa, Etsuo
    Taniguchi, Tetsuji
    QUANTUM INFORMATION PROCESSING, 2021, 20 (03)
  • [9] Study of Cayley Digraphs over Polygroups
    Sanjabi, Ali
    Jafarpour, Morteza
    Hoskova-Mayerova, Sarka
    Aghabozorgi, Hossien
    Vagaska, Alena
    MATHEMATICS, 2024, 12 (17)
  • [10] Hermitian Metric and the Infinite Dihedral Group
    Bryan Goldberg
    Rongwei Yang
    Proceedings of the Steklov Institute of Mathematics, 2019, 304 : 136 - 145