Relationship between ultrasound texture classification images and histology of atherosclerotic plaque

被引:40
|
作者
Rakebrandt, F
Crawford, DC
Havard, D
Coleman, D
Woodcock, JP
机构
[1] Cardiff Univ, Dept Med Phys & Clin Engn, Cardiff CF4 4XN, S Glam, Wales
[2] Univ Wales Hosp, Dept Med Phys & Clin Engn, Cardiff CF4 4XW, S Glam, Wales
[3] Univ Wales Hosp, Dept Histopathol, Cardiff CF4 4XW, S Glam, Wales
[4] Vale NHS Trust, Cardiff, S Glam, Wales
来源
ULTRASOUND IN MEDICINE AND BIOLOGY | 2000年 / 26卷 / 09期
关键词
carotid plaque; atherosclerosis; tissue characterisation; B-scan; texture analysis; histology mapping; parametric images;
D O I
10.1016/S0301-5629(00)00314-8
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
Structure and content of atherosclerotic plaque varies between patients and may be indicative of their risk for embolisation. This study aimed to construct parametric images of B-scan texture and assess their potential for predicting plaque morphology. Sequential transverse in vitro scans of 10 carotid plaques, excised during endarterectomy, were compared with macrohistology maps of plaque content. Multidiscriminant analysis combined the output of 157 statistical and textural algorithms into five separate texture classes, displayed as ultrasound (US) texture classification images (UTCI). Visual comparison between corresponding UTCI and histology maps found the five texture classes matched with the location of fibrin, elastin, calcium, haemorrhage or lipid. However, histology preparation removes calcium and lipid and, so, can affect the structural integrity of atherosclerotic plaques. Soft tissue regions smaller than the UTCI kernel, (0.87 mm x 0.85 mm x 3.9 mm), such as blood clots, are also difficult to detect by UTCI. These factors demonstrate limitations in the use of histology as a "gold standard" for US tissue characterisation. (C) 2001 World Federation for Ultrasound in Medicine & Biology.
引用
收藏
页码:1393 / 1402
页数:10
相关论文
共 50 条
  • [1] Variogram methods for texture classification of atherosclerotic plaque ultrasound images
    Jeromin, Oliver M.
    Pattichis, Marios S.
    Pattichis, Constantinos
    Kyriacou, Efthyvolous
    Nicolaides, Andrew
    MEDICAL IMAGING 2006: IMAGE PROCESSING, PTS 1-3, 2006, 6144
  • [2] Atherosclerotic Carotid Plaque Texture Variability in Ultrasound Video
    Loizou, Christos P.
    Pantziaris, Marios
    Nicolaides, Andrew N.
    Pattichis, Constandinos S.
    6TH EUROPEAN CONFERENCE OF THE INTERNATIONAL FEDERATION FOR MEDICAL AND BIOLOGICAL ENGINEERING, 2015, 45 : 176 - 179
  • [3] Texture Feature Variability in Ultrasound Video of the Atherosclerotic Carotid Plaque
    Loizou, Christos P.
    Pattichis, Constantinos S.
    Pantziaris, Marios
    Kyriacou, Efthyvoulos
    Nicolaides, Andrew
    IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE, 2017, 5
  • [4] Fractal analysis of ultrasound images of carotid atherosclerotic plaque
    Asvestas, P
    Golemati, S
    Matsopoulos, GK
    Nikita, KS
    PROCEEDINGS OF THE 23RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOLS 1-4: BUILDING NEW BRIDGES AT THE FRONTIERS OF ENGINEERING AND MEDICINE, 2001, 23 : 2789 - 2792
  • [5] Speckle reduction in ultrasound images of atherosclerotic carotid plaque
    Loizou, C
    Christodoulou, C
    Pattichis, CS
    Istepanian, R
    Pantziaris, M
    Nicolaides, A
    DSP 2002: 14TH INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING PROCEEDINGS, VOLS 1 AND 2, 2002, : 525 - 528
  • [6] A Novel Semiautomated Atherosclerotic Plaque Characterization Method Using Grayscale Intravascular Ultrasound Images: Comparison With Virtual Histology
    Athanasiou, Lambros S.
    Karvelis, Petros S.
    Tsakanikas, Vasilis D.
    Naka, Katerina K.
    Michalis, Lampros K.
    Bourantas, Christos V.
    Fotiadis, Dimitrios I.
    IEEE TRANSACTIONS ON INFORMATION TECHNOLOGY IN BIOMEDICINE, 2012, 16 (03): : 391 - 400
  • [7] Atherosclerotic plaque classification in carotid ultrasound images using machine learning and explainable deep learning
    Singh, Soni
    Jain, Pankaj K.
    Sharma, Neeraj
    Pohit, Mausumi
    Roy, Sudipta
    INTELLIGENT MEDICINE, 2024, 4 (02): : 83 - 95
  • [8] A Computational Tool for Coronary Atherosclerotic Plaque Analysis of Virtual Histology Images
    Sales, Fernando J. R.
    Falcao, Joao L. A. A.
    Falcao, Breno A. A.
    Furuie, Sergio S.
    Lemos, Pedro A.
    COMPUTING IN CARDIOLOGY 2010, VOL 37, 2010, 37 : 907 - 910
  • [9] Atherosclerotic plaque burden and morphology: a comparison between intravascular ultrasound virtual histology and CT coronary angiography
    Ciardetti, M.
    Bianchi, M.
    Lami, E.
    Shlueter, M.
    Coceani, M.
    Perinazzo, A.
    Mazzarisi, A.
    Marraccini, P.
    EUROPEAN HEART JOURNAL, 2009, 30 : 204 - 204
  • [10] Atherosclerotic Plaque Composition and Classification Identified by Coronary Computed Tomography Assessment of Computed Tomography-Generated Plaque Maps Compared With Virtual Histology Intravascular Ultrasound and Histology
    Obaid, Daniel R.
    Calvert, Patrick A.
    Gopalan, Deepa
    Parker, Richard A.
    Hoole, Stephen P.
    West, Nick E. J.
    Goddard, Martin
    Rudd, James H. F.
    Bennett, Martin R.
    CIRCULATION-CARDIOVASCULAR IMAGING, 2013, 6 (05) : 655 - 664