Robust Exponential Synchronization for Stochastic Delayed Neural Networks with Reaction-Diffusion Terms and Markovian Jumping Parameters

被引:7
|
作者
Wei, Tengda [1 ,2 ]
Wang, Yangfan [3 ]
Wang, Linshan [4 ]
机构
[1] Ocean Univ China, Coll Ocean & Atmospher Sci, Qingdao 266100, Peoples R China
[2] Univ Dundee, Dept Math, Dundee DD1 4HN, Scotland
[3] Ocean Univ China, Coll Marine Life Sci, Qingdao 266100, Peoples R China
[4] Ocean Univ China, Sch Math Sci, Qingdao 266100, Peoples R China
基金
中国国家自然科学基金;
关键词
Synchronization; Stochastic delayed neural network; Reaction-diffusion; Markovian jumping parameter; Wiener process; TIME-VARYING DELAYS; DISTRIBUTED DELAYS; DYNAMICAL NETWORKS; STABILITY;
D O I
10.1007/s11063-017-9756-6
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper investigates robust exponential synchronization for stochastic delayed neural networks with reaction-diffusion terms and Markovian jumping parameters driven by infinite dimensional Wiener processes. The novelty of this paper lives in the use of a new Lyapunov-Krasovskii functional and Poincare inequality to present some criteria for robust exponential synchronization in terms of linear matrix inequalities (LMIs) and matrix measure under Robin boundary conditions. Finally, two numerical examples are provided to illustrate the effectiveness of the easily verifiable synchronization LMIs in MATLAB toolbox.
引用
收藏
页码:979 / 994
页数:16
相关论文
共 50 条
  • [1] Robust Exponential Synchronization for Stochastic Delayed Neural Networks with Reaction–Diffusion Terms and Markovian Jumping Parameters
    Tengda Wei
    Yangfan Wang
    Linshan Wang
    Neural Processing Letters, 2018, 48 : 979 - 994
  • [2] Stochastic exponential stability of the delayed reaction-diffusion recurrent neural networks with Markovian jumping parameters
    Wang, Linshan
    Zhang, Zhe
    Wang, Yangfan
    PHYSICS LETTERS A, 2008, 372 (18) : 3201 - 3209
  • [3] Synchronization of stochastic Markovian jump neural networks with reaction-diffusion terms
    Shi, Guodong
    Ma, Qian
    NEUROCOMPUTING, 2012, 77 (01) : 275 - 280
  • [4] Adaptive exponential synchronization of delayed neural networks with reaction-diffusion terms
    Sheng, Li
    Yang, Huizhong
    Lou, Xuyang
    CHAOS SOLITONS & FRACTALS, 2009, 40 (02) : 930 - 939
  • [5] Exponential Stability of Delayed Reaction-Diffusion Neural Networks with Markovian Jumping Parameters Based on State Estimation
    Liu Yan
    Sun Duoqing
    Ma Huiquan
    PROCEEDINGS OF THE 31ST CHINESE CONTROL CONFERENCE, 2012, : 3267 - 3272
  • [6] ROBUST EXPONENTIAL STABILITY OF STOCHASTIC REACTION-DIFFUSION RECURRENT NEURAL NETWORKS WITH MARKOVIAN JUMPING PARAMETERS AND MODE-DEPENDENT DELAYS
    Kao, Y.
    Zhang, P.
    Shi, L.
    Sun, X.
    DYNAMIC SYSTEMS AND APPLICATIONS, 2014, 23 (2-3): : 391 - 414
  • [7] Global exponential synchronization of delayed memristive neural networks with reaction-diffusion terms
    Cao, Yanyi
    Cao, Yuting
    Guo, Zhenyuan
    Huang, Tingwen
    Wen, Shiping
    NEURAL NETWORKS, 2020, 123 : 70 - 81
  • [8] Exponential stability of stochastic reaction-diffusion uncertain fuzzy neural networks with mixed delays and Markovian jumping parameters
    Balasubramaniam, P.
    Vidhya, C.
    EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) : 3109 - 3115
  • [9] Robust exponential stabilization of a class of delayed neural networks with reaction-diffusion terms
    Lou, Xuyang
    Cui, Baotong
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2006, 16 (06) : 435 - 443
  • [10] Global Exponential Robust Stability of Delayed Hopfield Neural Networks with Reaction-Diffusion Terms
    Xu, Xiaohui
    Zhang, Jiye
    Zhang, Weihua
    ADVANCES IN NEURAL NETWORKS - ISNN 2010, PT 1, PROCEEDINGS, 2010, 6063 : 693 - 701