Estimation of the Distribution of Tabebuia guayacan (Bignoniaceae) Using High-Resolution Remote Sensing Imagery

被引:34
|
作者
Sanchez-Azofeifa, Arturo [1 ,2 ,3 ]
Rivard, Benoit [1 ,2 ]
Wright, Joseph [3 ]
Feng, Ji-Lu [1 ,2 ]
Li, Peijun [4 ,5 ]
Chong, Mei Mei [1 ,2 ]
Bohlman, Stephanie A. [6 ]
机构
[1] Univ Alberta, CEOS, Edmonton, AB T6G 2R3, Canada
[2] Univ Alberta, Dept Earth & Atmospher Sci, Edmonton, AB T6G 2R3, Canada
[3] Smithsonian Trop Res Inst, Panama City, Panama
[4] Peking Univ, Inst Remote Sensing, Beijing 100871, Peoples R China
[5] Peking Univ, GIS, Beijing 100871, Peoples R China
[6] Univ Florida, Sch Forest Resources & Conservat, Gainesville, FL 32611 USA
基金
美国国家科学基金会; 加拿大自然科学与工程研究理事会;
关键词
high-resolution remote sensing; T; guayacan; Spectral Angle Mapping; machine learning; TROPICAL MOIST FOREST; LEAF-AREA INDEX; HYPERSPECTRAL DISCRIMINATION; SATELLITE DATA; AMAZON FOREST; IN-SITU; CLASSIFICATION; TREES; LIANAS; VARIABILITY;
D O I
10.3390/s110403831
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
Species identification and characterization in tropical environments is an emerging field in tropical remote sensing. Significant efforts are currently aimed at the detection of tree species, of levels of forest successional stages, and the extent of liana occurrence at the top of canopies. In this paper we describe our use of high resolution imagery from the Quickbird Satellite to estimate the flowering population of Tabebuia guayacan trees at Barro Colorado Island (BCI), in Panama. The imagery was acquired on 29 April 2002 and 21 March 2004. Spectral Angle Mapping via a One-Class Support Vector machine was used to detect the presence of 422 and 557 flowering tress in the April 2002 and March 2004 imagery. Of these, 273 flowering trees are common to both dates. This study presents a new perspective on the effectiveness of high resolution remote sensing for monitoring a phenological response and its use as a tool for potential conservation and management of natural resources in tropical environments.
引用
收藏
页码:3831 / 3851
页数:21
相关论文
共 50 条
  • [1] Multispectral Remote Sensing for Yield Estimation Using High-Resolution Imagery from an Unmanned Aerial Vehicle
    Aboutalebi, Mahyar
    Torres-Rua, Alfonso F.
    Allen, Niel
    AUTONOMOUS AIR AND GROUND SENSING SYSTEMS FOR AGRICULTURAL OPTIMIZATION AND PHENOTYPING III, 2018, 10664
  • [2] Efficient CNN for high-resolution remote sensing imagery understanding
    Sinaga, Kenno B. M.
    Yudistira, Novanto
    Santoso, Edy
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (22) : 61737 - 61759
  • [3] The method of using remote sensing high-resolution imagery data in cartographical study of seaports
    Klewski, Andrzej
    Sanecki, Jozef
    Maj, Konrad
    Stepien, Grzegorz
    Gmaj, Robert
    SCIENTIFIC JOURNALS OF THE MARITIME UNIVERSITY OF SZCZECIN-ZESZYTY NAUKOWE AKADEMII MORSKIEJ W SZCZECINIE, 2010, 22 (94): : 33 - 38
  • [4] RAPID DAMAGE ASSESSMENT USING HIGH-RESOLUTION REMOTE SENSING IMAGERY: TOOLS AND TECHNIQUES
    Vatsavai, R.
    Tuttle, M.
    Bhaduri, B.
    Bright, E.
    Cheriyadat, A.
    Chandola, V.
    Graesser, J.
    2011 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2011, : 1445 - 1448
  • [5] Road-Following and Traffic Analysis using High-Resolution Remote Sensing Imagery
    Kahaki, Seyed Mostafa Mousavi
    Fathy, Mahmood
    Ganj, Mohsen
    INTELLIGENT VEHICLE CONTROLS & INTELLIGENT TRANSPORTATION SYSTEMS, PROCEEDINGS, 2009, : 133 - +
  • [6] Road Extraction from High-Resolution Remote Sensing Imagery Using Deep Learning
    Xu, Yongyang
    Xie, Zhong
    Feng, Yaxing
    Chen, Zhanlong
    REMOTE SENSING, 2018, 10 (09)
  • [7] Identification of shelterbelt width from high-resolution remote sensing imagery
    Deng, Rongxin
    Yang, Gao
    Li, Ying
    Xu, Zhengran
    Zhang, Xing
    Zhang, Lu
    Li, Chunjing
    AGROFORESTRY SYSTEMS, 2022, 96 (08) : 1091 - 1101
  • [8] Multiscale Progressive Segmentation Network for High-Resolution Remote Sensing Imagery
    Hang, Renlong
    Yang, Ping
    Zhou, Feng
    Liu, Qingshan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [9] Automated object recognition in high-resolution optical remote sensing imagery
    Yao, Yazhou
    Chen, Tao
    Bi, Hanbo
    Cai, Xinhao
    Pei, Gensheng
    Yang, Guoye
    Yan, Zhiyuan
    Sun, Xian
    Xu, Xing
    Zhang, Hai
    NATIONAL SCIENCE REVIEW, 2023, 10 (06)
  • [10] Lightweight multiscale framework for segmentation of high-resolution remote sensing imagery
    Bello, Inuwa M.
    Zhang, Ke
    Wang, Jingyu
    Li, Haoyu
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (03)