Long-term orbital evolution of multi-planet systems under tidal dissipation often converges to a stationary state, known as the tidal fixed point. The fixed point is characterized by a lack of oscillations in the eccentricities and apsidal alignment among the orbits. Quantitatively, the nature of the fixed point is dictated by mutual interactions among the planets as well as non-Keplerian effects. We show that if a roughly coplanar system hosts a hot, sub-Saturn mass planet, and is tidally relaxed, separation of planet-planet interactions and non-Keplerian effects in the equations of motion leads to a direct determination of the true masses of the planets. Consequently, a "snapshot" observational determination of the orbital state resolves the sin(I) degeneracy and opens up a direct avenue toward identification of the true lowest-mass exoplanets detected. We present an approximate, as well as a general, mathematical framework for computation of the line-of-sight inclination of secular systems, and apply our models illustratively to the 61 Vir system. We conclude by discussing the observability of planetary systems to which our method is applicable and we set our analysis into a broader context by presenting a current summary of the various possibilities for determining the physical properties of planets from observations of their orbital states.
机构:
Univ Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, CanadaUniv Toronto, Canadian Inst Theoret Astrophys, 60 St George St, Toronto, ON M5S 3H8, Canada
机构:
Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
Fang, Julia
Margot, Jean-Luc
论文数: 0引用数: 0
h-index: 0
机构:
Univ Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA
Univ Calif Los Angeles, Dept Earth & Space Sci, Los Angeles, CA 90095 USAUniv Calif Los Angeles, Dept Phys & Astron, Los Angeles, CA 90095 USA