Dirichlet and Bergman spaces of holomorphic functions on the unit ball of Cn

被引:1
|
作者
Stoll, M [1 ]
机构
[1] Univ S Carolina, Dept Math, Columbia, SC 29208 USA
来源
MONATSHEFTE FUR MATHEMATIK | 2005年 / 144卷 / 02期
关键词
Bergman metric; Bergman space; Dirichlet space; Laplace-Beltrami operator; holomorphic function;
D O I
10.1007/s00605-004-0292-x
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let B denote the unit hall in C-n, n >= 1, and let tau and (del) over tilde denote the volume measure and gradient with respect to the Bergman metric on B. In the paper we consider the weighted Dirichlet spaces D-gamma, gamma>(n-1), and weighted Bergman spaces A(alpha)(p), 0<p<infinity, alpha>n, of holomorphic functions f on B for which D-gamma(f) and parallel to f parallel to(A alpha p) respectively are finite, where D-gamma(f)=integral(B)(1-vertical bar z vertical bar(2))(gamma)vertical bar(del) over tildef(z)vertical bar(2)d tau(z), and parallel to f parallel to(A alpha p)(p) =integral(B)(1-vertical bar z vertical bar(2))(alpha)vertical bar f(z)(p)d tau(z). The main result of the paper is the following theorem.
引用
收藏
页码:131 / 139
页数:9
相关论文
共 50 条