QTRAN: Learning to Factorize with Transformation for Cooperative Multi-Agent Reinforcement learning

被引:0
|
作者
Son, Kyunghwan [1 ]
Kim, Daewoo [1 ]
Kang, Wan Ju [1 ]
Hostallero, David [1 ]
Yi, Yung [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Sch Elect Engn, Daejeon, South Korea
基金
新加坡国家研究基金会;
关键词
GAME; GO;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We explore value-based solutions for multi-agent reinforcement learning (MARL) tasks in the centralized training with decentralized execution (CTDE) regime popularized recently. However, VDN and QMIX are representative examples that use the idea of factorization of the joint actionvalue function into individual ones for decentralized execution. VDN and QMIX address only a fraction of factorizable MARL tasks due to their structural constraint in factorization such as additivity and monotonicity. In this paper, we propose a new factorization method for MARL, QTRAN, which is free from such structural constraints and takes on a new approach to transforming the original joint action-value function into an easily factorizable one, with the same optimal actions. QTRAN guarantees more general factorization than VDN or QMIX, thus covering a much wider class of MARL tasks than does previous methods. Our experiments for the tasks of multi-domain Gaussian-squeeze and modified predator-prey demonstrate QTRAN's superior performance with especially larger margins in games whose payoffs penalize non-cooperative behavior more aggressively.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Consensus Learning for Cooperative Multi-Agent Reinforcement Learning
    Xu, Zhiwei
    Zhang, Bin
    Li, Dapeng
    Zhang, Zeren
    Zhou, Guangchong
    Chen, Hao
    Fan, Guoliang
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 10, 2023, : 11726 - 11734
  • [2] On the Robustness of Cooperative Multi-Agent Reinforcement Learning
    Lin, Jieyu
    Dzeparoska, Kristina
    Zhang, Sai Qian
    Leon-Garcia, Alberto
    Papernot, Nicolas
    2020 IEEE SYMPOSIUM ON SECURITY AND PRIVACY WORKSHOPS (SPW 2020), 2020, : 62 - 68
  • [3] Multi-Agent Uncertainty Sharing for Cooperative Multi-Agent Reinforcement Learning
    Chen, Hao
    Yang, Guangkai
    Zhang, Junge
    Yin, Qiyue
    Huang, Kaiqi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [4] Learning Cooperative Intrinsic Motivation in Multi-Agent Reinforcement Learning
    Hong, Seung-Jin
    Lee, Sang-Kwang
    12TH INTERNATIONAL CONFERENCE ON ICT CONVERGENCE (ICTC 2021): BEYOND THE PANDEMIC ERA WITH ICT CONVERGENCE INNOVATION, 2021, : 1697 - 1699
  • [5] Cooperative Learning of Multi-Agent Systems Via Reinforcement Learning
    Wang, Xin
    Zhao, Chen
    Huang, Tingwen
    Chakrabarti, Prasun
    Kurths, Juergen
    IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2023, 9 : 13 - 23
  • [6] Cooperative Multi-Agent Reinforcement Learning With Approximate Model Learning
    Park, Young Joon
    Lee, Young Jae
    Kim, Seoung Bum
    IEEE ACCESS, 2020, 8 : 125389 - 125400
  • [7] Multi-agent cooperative learning research based on reinforcement learning
    Liu, Fei
    Zeng, Guangzhou
    2006 10TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN, PROCEEDINGS, VOLS 1 AND 2, 2006, : 1408 - 1413
  • [8] Cooperative Multi-Agent Reinforcement Learning with Hypergraph Convolution
    Bai, Yunpeng
    Gong, Chen
    Zhang, Bin
    Fan, Guoliang
    Hou, Xinwen
    Lu, Yu
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [9] Multi-agent Cooperative Search based on Reinforcement Learning
    Sun, Yinjiang
    Zhang, Rui
    Liang, Wenbao
    Xu, Cheng
    PROCEEDINGS OF 2020 3RD INTERNATIONAL CONFERENCE ON UNMANNED SYSTEMS (ICUS), 2020, : 891 - 896
  • [10] Levels of Realism for Cooperative Multi-agent Reinforcement Learning
    Cunningham, Bryan
    Cao, Yong
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT I, 2012, 7331 : 573 - 582