On the local fluctuations of last-passage percolation models

被引:18
|
作者
Cator, Eric [1 ]
Pimentel, Leandro P. R. [2 ]
机构
[1] Radboud Univ Nijmegen, Inst Math Astrophys & Particle Phys, NL-6525 AJ Nijmegen, Netherlands
[2] Univ Fed Rio de Janeiro, Inst Math, BR-21941909 Rio De Janeiro, RJ, Brazil
关键词
GROWTH;
D O I
10.1016/j.spa.2014.08.009
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using the fact that the Airy process describes the limiting fluctuations of the Hammersley last-passage percolation model, we prove that it behaves locally like a Brownian motion. Our method is quite straightforward, and it is based on a certain monotonicity and good control over the equilibrium measures of the Hammersley model (local comparison). (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:538 / 551
页数:14
相关论文
共 50 条
  • [1] Local stationarity in exponential last-passage percolation
    Balazs, Marton
    Busani, Ofer
    Seppalainen, Timo
    PROBABILITY THEORY AND RELATED FIELDS, 2021, 180 (1-2) : 113 - 162
  • [2] Local stationarity in exponential last-passage percolation
    Márton Balázs
    Ofer Busani
    Timo Seppäläinen
    Probability Theory and Related Fields, 2021, 180 : 113 - 162
  • [3] A problem in last-passage percolation
    Kesten, Harry
    Sidoravicius, Vladas
    BRAZILIAN JOURNAL OF PROBABILITY AND STATISTICS, 2010, 24 (02) : 300 - 320
  • [4] On some special directed last-passage percolation models
    Johansson, Kurt
    INTEGRABLE SYSTEMS AND RANDOM MATRICES: IN HONOR OF PERCY DEIFT, 2008, 458 : 333 - 346
  • [5] Influence of the initial condition in equilibrium last-passage percolation models
    Cator, Eric A.
    Pimentel, Leandro P. R.
    Souza, Marcio W. A.
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 7
  • [6] Geodesic forests in last-passage percolation
    Lopez, Sergio I.
    Pimentel, Leandro P. R.
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2017, 127 (01) : 304 - 324
  • [7] Heavy tails in last-passage percolation
    Hambly, Ben
    Martin, James B.
    PROBABILITY THEORY AND RELATED FIELDS, 2007, 137 (1-2) : 227 - 275
  • [8] Heavy tails in last-passage percolation
    Ben Hambly
    James B. Martin
    Probability Theory and Related Fields, 2007, 137 : 227 - 275
  • [9] Sublinear Variance for Directed Last-Passage Percolation
    B. T. Graham
    Journal of Theoretical Probability, 2012, 25 : 687 - 702
  • [10] From stability to chaos in last-passage percolation
    Ahlberg, Daniel
    Deijfen, Maria
    Sfragara, Matteo
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2024, 56 (01) : 411 - 422