Sharp threshold functions for random intersection graphs via a coupling method

被引:0
|
作者
Rybarczyk, Katarzyna [1 ]
机构
[1] Adam Mickiewicz Univ, Fac Math & Comp Sci, PL-60769 Poznan, Poland
来源
ELECTRONIC JOURNAL OF COMBINATORICS | 2011年 / 18卷 / 01期
关键词
COMPONENT EVOLUTION; EQUIVALENCE; G(N;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present a new method which enables us to find threshold functions for many properties in random intersection graphs. This method is used to establish sharp threshold functions in random intersection graphs for k-connectivity, perfect matching containment and Hamilton cycle containment.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Threshold Functions in Random s-Intersection Graphs
    Zhao, Jun
    2015 53RD ANNUAL ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING (ALLERTON), 2015, : 1358 - 1365
  • [2] The coupling method for inhomogeneous random intersection graphs
    Rybarczyk, Katarzyna
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (02):
  • [3] Sharp threshold for rigidity of random graphs
    Lew, Alan
    Nevo, Eran
    Peled, Yuval
    Raz, Orit E.
    BULLETIN OF THE LONDON MATHEMATICAL SOCIETY, 2023, 55 (01) : 490 - 501
  • [4] Sharp thresholds for Hamiltonicity in random intersection graphs
    Efthymiou, Charilaos
    Spirakis, Paul G.
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (40-42) : 3714 - 3730
  • [5] Sharp threshold for hamiltonicity of random geometric graphs
    Diaz, Josep
    Mitsche, Dieter
    Perez, Xavier
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2007, 21 (01) : 57 - 65
  • [6] THE SHARP THRESHOLD FOR JIGSAW PERCOLATION IN RANDOM GRAPHS
    Cooley, Oliver
    Kapetanopoulos, Tobias
    Makai, Tamas
    ADVANCES IN APPLIED PROBABILITY, 2019, 51 (02) : 378 - 407
  • [7] Sharp threshold for the appearance of certain spanning trees in random graphs
    Hefetz, Dan
    Krivelevich, Michael
    Szabo, Tibor
    RANDOM STRUCTURES & ALGORITHMS, 2012, 41 (04) : 391 - 412
  • [8] Threshold functions for random graphs on a line segment
    McColm, GL
    COMBINATORICS PROBABILITY & COMPUTING, 2004, 13 (03): : 373 - 387
  • [9] A sharp threshold for random graphs with a monochromatic triangle in every edge coloring
    Friedgut, E
    Rödl, V
    Rucinski, A
    Tetali, P
    MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2006, 179 (845) : III - +
  • [10] Sharp threshold for embedding balanced spanning trees in random geometric graphs
    Diaz, Alberto Espuny
    Lichev, Lyuben
    Mitsche, Dieter
    Wesolek, Alexandra
    JOURNAL OF GRAPH THEORY, 2024, 107 (01) : 107 - 125