Minimax Off-Policy Evaluation for Multi-Armed Bandits

被引:3
|
作者
Ma, Cong [1 ]
Zhu, Banghua [2 ]
Jiao, Jiantao [2 ,3 ]
Wainwright, Martin J. [2 ,3 ]
机构
[1] Univ Chicago, Dept Stat, Chicago, IL 60637 USA
[2] Univ Calif Berkeley UC Berkeley, Dept Elect Engn & Comp Sci, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley UC Berkeley, Dept Stat, Berkeley, CA 94720 USA
关键词
Switches; Probability; Monte Carlo methods; Chebyshev approximation; Measurement; Computational modeling; Sociology; Off-policy evaluation; multi-armed bandits; minimax optimality; importance sampling; POLYNOMIALS;
D O I
10.1109/TIT.2022.3162335
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We study the problem of off-policy evaluation in the multi-armed bandit model with bounded rewards, and develop minimax rate-optimal procedures under three settings. First, when the behavior policy is known, we show that the Switch estimator, a method that alternates between the plug-in and importance sampling estimators, is minimax rate-optimal for all sample sizes. Second, when the behavior policy is unknown, we analyze performance in terms of the competitive ratio, thereby revealing a fundamental gap between the settings of known and unknown behavior policies. When the behavior policy is unknown, any estimator must have mean-squared error larger-relative to the oracle estimator equipped with the knowledge of the behavior policy- by a multiplicative factor proportional to the support size of the target policy. Moreover, we demonstrate that the plug-in approach achieves this worst-case competitive ratio up to a logarithmic factor. Third, we initiate the study of the partial knowledge setting in which it is assumed that the minimum probability taken by the behavior policy is known. We show that the plug-in estimator is optimal for relatively large values of the minimum probability, but is sub-optimal when the minimum probability is low. In order to remedy this gap, we propose a new estimator based on approximation by Chebyshev polynomials that provably achieves the optimal estimation error. Numerical experiments on both simulated and real data corroborate our theoretical findings.
引用
收藏
页码:5314 / 5339
页数:26
相关论文
共 50 条
  • [1] Trading off Rewards and Errors in Multi-Armed Bandits
    Erraqabi, Akram
    Lazaric, Alessandro
    Valko, Michal
    Brunskill, Emma
    Liu, Yun-En
    ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 54, 2017, 54 : 709 - 717
  • [2] On Kernelized Multi-armed Bandits
    Chowdhury, Sayak Ray
    Gopalan, Aditya
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [3] Regional Multi-Armed Bandits
    Wang, Zhiyang
    Zhou, Ruida
    Shen, Cong
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 84, 2018, 84
  • [4] Multi-armed Bandits with Compensation
    Wang, Siwei
    Huang, Longbo
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [5] Federated Multi-Armed Bandits
    Shi, Chengshuai
    Shen, Cong
    THIRTY-FIFTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, THIRTY-THIRD CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE AND THE ELEVENTH SYMPOSIUM ON EDUCATIONAL ADVANCES IN ARTIFICIAL INTELLIGENCE, 2021, 35 : 9603 - 9611
  • [6] Multi-armed Bandits with Probing
    Elumar, Eray Can
    Tekin, Cem
    Yagan, Osman
    2024 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, ISIT 2024, 2024, : 2080 - 2085
  • [7] Ballooning multi-armed bandits
    Ghalme, Ganesh
    Dhamal, Swapnil
    Jain, Shweta
    Gujar, Sujit
    Narahari, Y.
    ARTIFICIAL INTELLIGENCE, 2021, 296
  • [8] An empirical evaluation of active inference in multi-armed bandits
    Markovic, Dimitrije
    Stojic, Hrvoje
    Schwoebel, Sarah
    Kiebel, Stefan J.
    NEURAL NETWORKS, 2021, 144 : 229 - 246
  • [9] Approximate Function Evaluation via Multi-Armed Bandits
    Baharav, Tavor Z.
    Cheng, Gary
    Pilanci, Mert
    Tse, David
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 151, 2022, 151 : 108 - 135
  • [10] Optimal and Adaptive Off-policy Evaluation in Contextual Bandits
    Wang, Yu-Xiang
    Agarwal, Alekh
    Dudik, Miroslav
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70