Learning conditional random fields for stereo

被引:0
|
作者
Scharstein, Daniel [1 ]
Pal, Chris [2 ]
机构
[1] Middlebury Coll, Middlebury, VT 05753 USA
[2] Univ Massachusetts, Amherst, MA 01003 USA
来源
2007 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, VOLS 1-8 | 2007年
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
State-of-the-art stereo vision algorithms utilize color changes as important cues for object boundaries. Most methods impose heuristic restrictions or priors on disparities, for example by modulating local smoothness costs with intensity gradients. In this paper we seek to replace such heuristics with explicit probabilistic models of disparities and intensities learned from real images. We have constructed a large number of stereo datasets with ground-truth disparities, and we use a subset of these datasets to learn the parameters of Conditional Random Fields (CRFs). We present experimental results illustrating the potential of our approach for automatically learning the parameters of models with richer structure than standard hand-tuned MRF models.
引用
收藏
页码:1688 / +
页数:2
相关论文
共 50 条
  • [1] MVSCRF: Learning Multi-view Stereo with Conditional Random Fields
    Xue, Youze
    Chen, Jiansheng
    Wan, Weitao
    Huang, Yiqing
    Yu, Cheng
    Li, Tianpeng
    Bao, Jiayu
    2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 4311 - 4320
  • [2] On Learning Conditional Random Fields for Stereo Exploring Model Structures and Approximate Inference
    Pal, Christopher J.
    Weinman, Jerod J.
    Tran, Lam C.
    Scharstein, Daniel
    INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 99 (03) : 319 - 337
  • [3] Learning flexible features for conditional random fields
    Stewart, Liam
    He, Xuming
    Zemel, Richard S.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2008, 30 (08) : 1415 - 1426
  • [4] Efficient Piecewise Learning for Conditional Random Fields
    Alahari, Karteek
    Russell, Chris
    Torr, Philip H. S.
    2010 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2010, : 895 - 901
  • [5] Blending Learning and Inference in Conditional Random Fields
    Hazan, Tamir
    Schwing, Alexander G.
    Urtasun, Raquel
    JOURNAL OF MACHINE LEARNING RESEARCH, 2016, 17
  • [6] Convolutional neural network based deep conditional random fields for stereo matching
    Wang, Zhi
    Zhu, Shiqiang
    Li, Yuehua
    Cui, Zhengzhe
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2016, 40 : 739 - 750
  • [7] Learning Conditional Random Fields for Classification of Hyperspectral Images
    Zhong, Ping
    Wang, Runsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2010, 19 (07) : 1890 - 1907
  • [8] Learning Online Discussion Structures by Conditional Random Fields
    Wang, Hongning
    Wang, Chi
    Zhai, ChengXiang
    Han, Jiawei
    PROCEEDINGS OF THE 34TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR'11), 2011, : 435 - 444
  • [9] Classification of Stereo Images from Mobile Mapping Data Using Conditional Random Fields
    Coenen, Max
    Rottensteiner, Franz
    Heipke, Christian
    PFG-JOURNAL OF PHOTOGRAMMETRY REMOTE SENSING AND GEOINFORMATION SCIENCE, 2017, 85 (01): : 17 - 30
  • [10] Classification of Stereo Images from Mobile Mapping Data Using Conditional Random Fields
    Max Coenen
    Franz Rottensteiner
    Christian Heipke
    PFG – Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 2017, 85 : 17 - 30