Microstructure, mechanical properties, and in vitro biocompatibility of spark plasma sintered hydroxyapatite-aluminum oxide-carbon nanotube composite

被引:56
|
作者
Kalmodia, Sushma [1 ]
Goenka, Shilpi [2 ,3 ]
Laha, Tapas [4 ,5 ]
Lahiri, Debrupa [6 ]
Basu, Bikramjit [1 ]
Balani, Kantesh [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mat & Met Engn, Kanpur 208016, Uttar Pradesh, India
[2] Punjab Engn Coll, Dept Met Engn, Du Chandigarh 160012, India
[3] Univ Cincinnati, Dept Chem & Mat Engn, Cincinnati, OH 45221 USA
[4] Indian Inst Technol Kharagpur, Dept Met & Mat Engn, Kharagpur 721302, W Bengal, India
[5] Univ Calif Davis, Dept Chem Engn & Mat Sci, Davis, CA 95616 USA
[6] Florida Int Univ, Dept Mech & Mat Engn, Miami, FL 33174 USA
来源
MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS | 2010年 / 30卷 / 08期
关键词
Hydroxyapatite (HA); Alumina (Al2O3); Carbon nanotubes (CNTs); Spark plasma sintering (SPS); Fracture toughness; Biocompatibility; CELL-SHAPE; BEHAVIOR; COATINGS; NANOCOMPOSITES; ADHESION;
D O I
10.1016/j.msec.2010.06.009
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
In the present work. HA reinforced with Al2O3 and multiwalled carbon nanotubes (CNTs) is processed using spark plasma sintering (SPS). Vickers micro indentation and nanoindentation of the samples revealed contrary mechanical properties (hardness of 4.0, 6.1, and 4.4 GPa of HA, HA-Al2O3 and HA-Al2O3-CNT samples at bulk scale, while that of 8.0, 9.0, and 7.0 GPa respectively at nanoscale), owing to the difference in the interaction of the indenter with the material at two different length scales. The addition of Al2O3 reinforcement has been shown to enhance the indentation fracture toughness of HA matrix from 1.18 MPa m(1/2) to 2.07 MPa m(1/2). Further CNT reinforcement has increased the fracture toughness to 2.3 times (2.72 MPa m(1/2)). In vitro biocompatibility of CNT reinforced HA-Al2O3 composite has been evaluated using MTT assay on mouse fibroblast L929 cell line. Cell adhesion and proliferation have been characterized using scanning electron microscopy (SEM), and have been quantified using UV spectrophotometer. The combination of cell viability data as well as microscopic observations of cultured surfaces suggests that SPS sintered HA-Al2O3-CNT composites exhibit the ability to promote cell adhesion and proliferation on their surface and prove to be promising new biocompatible materials. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:1162 / 1169
页数:8
相关论文
共 50 条
  • [1] Spark Plasma Sintered Hydroxyapatite/Graphite Nanosheet and Hydroxyapatite/Multiwalled Carbon Nanotube Composites: Mechanical and in Vitro Cellular Properties
    Zhu, Jiangtao
    Wong, Hoi Man
    Yeung, Kelvin Wai Kwok
    Tjong, Sie Chin
    ADVANCED ENGINEERING MATERIALS, 2011, 13 (04) : 336 - 341
  • [2] Microstructure and Properties of Spark Plasma Sintered Carbon Nanotube Reinforced Aluminum Matrix Composites
    Yadav, Vineet
    Harimkar, Sandip P.
    ADVANCED ENGINEERING MATERIALS, 2011, 13 (12) : 1128 - 1134
  • [3] Effect of carbon nanotube and aluminum oxide addition on plasma-sprayed hydroxyapatite coating's mechanical properties and biocompatibility
    Tercero, Jorge E.
    Namin, Shabnam
    Lahiri, Debrupa
    Balani, Kantesh
    Tsoukias, Nikolaos
    Agarwal, Arvind
    MATERIALS SCIENCE & ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2009, 29 (07): : 2195 - 2202
  • [4] Microstructure and mechanical properties of spark plasma sintered zirconia-hydroxyapatite nano-composite powders
    Kumar, R
    Prakash, KH
    Cheang, P
    Khor, KA
    ACTA MATERIALIA, 2005, 53 (08) : 2327 - 2335
  • [5] Spark plasma sintered tantalum carbide-carbon nanotube composite: Effect of pressure, carbon nanotube length and dispersion technique on microstructure and mechanical properties
    Bakshi, Srinivasa R.
    Musaramthota, Vishal
    Virzi, David A.
    Keshri, Anup K.
    Lahiri, Debrupa
    Singh, Virendra
    Seal, Sudipta
    Agarwal, Arvind
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (06): : 2538 - 2547
  • [6] Improved nanomechanical and in-vitro biocompatibility of graphene oxide-carbon nanotube hydroxyapatite hybrid composites by synergistic effect
    Jyoti, Jeevan
    Kiran, Abhimanyu
    Sandhu, Manjit
    Kumar, Amit
    Singh, Bhanu Pratap
    Kumar, Navin
    JOURNAL OF THE MECHANICAL BEHAVIOR OF BIOMEDICAL MATERIALS, 2021, 117
  • [7] Microstructure and mechanical properties of multiwalled carbon nanotube toughened spark plasma sintered ZrB2 composites
    Lin, J.
    Huang, Y.
    Zhang, H.
    Yang, Y.
    Hong, Y.
    ADVANCES IN APPLIED CERAMICS, 2016, 115 (05) : 308 - 312
  • [8] Microstructure and mechanical properties of spark plasma sintered AlCoFeMnNi high entropy alloy (HEA)-carbon nanotube (CNT) nanocomposite
    Bahrami, Abbas
    Mohammadnejad, Ali
    Sajadi, Mahnaz
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 862
  • [9] Preparation and properties of vanadium oxide-carbon nanotube composite films
    Wen, Yuejiang
    Xu, Xiangdong
    He, Qiong
    Fan, Taijun
    Yang, Shubing
    Huang, Long
    Ao, Tianhong
    Ma, Chunqian
    Jiang, Yadong
    Guangxue Xuebao/Acta Optica Sinica, 2012, 32 (05):
  • [10] Improved densification and mechanical properties of spark plasma sintered carbon nanotube reinforced alumina ceramics
    Sikder, Prabaha
    Sarkar, Soumya
    Biswas, Kriti Gaurab
    Das, Santanu
    Basu, Sumantra
    Das, Probal Kr.
    MATERIALS CHEMISTRY AND PHYSICS, 2016, 170 : 99 - 107